Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024.]
Geraadpleegd op 28-03-2024.
Geldend van 19-12-2023 t/m 31-12-2023

Regeling van de Staatssecretaris van Infrastructuur en Milieu, van 12 juni 2012, nr. IENM/BSK-2012/37333, houdende vaststelling van regels voor het berekenen en meten van de geluidsbelasting en de geluidproductie ingevolge de Wet geluidhinder en de Wet milieubeheer (Reken- en meetvoorschrift geluid 2012)

Hoofdstuk 1. Algemeen

[Regeling vervallen per 01-01-2024]

Artikel 1.1

[Regeling vervallen per 01-01-2024]

  • 1 In deze regeling wordt verstaan onder:

    • geluidplafondkaart: geluidplafondkaart als bedoeld in de artikelen 11.17 en 11.18 van de Wet milieubeheer;

    • geluidregister: geluidregister als bedoeld in artikel 11.25 van de Wet milieubeheer;

    • gevel: gevel als bedoeld in artikel 1 van de Wet geluidhinder en artikel 1 van het Besluit geluid milieubeheer;

    • Minister: Minister van Infrastructuur en Milieu;

    • motorvoertuigen:

      • a. lichte motorvoertuigen (lv): motorvoertuigen op drie of meer wielen, met uitzondering van de in categorie mv en categorie zv bedoelde motorvoertuigen;

      • b. middelzware motorvoertuigen (mv): gelede en ongelede autobussen, alsmede andere motorvoertuigen die ongeleed zijn en voorzien van een enkele achteras waarop vier banden zijn gemonteerd;

      • c. zware motorvoertuigen (zv): gelede motorvoertuigen, alsmede motorvoertuigen die zijn voorzien van een dubbele achteras, met uitzondering van autobussen;

    • plafondcorrectiewaarde: getal waarmee de geluidemissie wordt vermeerderd met betrekking tot een daarbij aangegeven gedeelte van een weg of spoorweg ten behoeve van het bepalen van de geluidproductie dan wel de geluidsbelasting.

Artikel 1.2

[Regeling vervallen per 01-01-2024]

De resultaten van een akoestisch onderzoek worden vastgelegd in een overeenkomstig hoofdstuk 1 van bijlage I bij deze regeling ingericht akoestisch rapport.

Artikel 1.3

[Regeling vervallen per 01-01-2024]

  • 1 De door berekening of meting bepaalde waarde van de geluidsbelasting wordt afgerond naar het dichtstbijzijnde gehele getal, waarbij een halve eenheid wordt afgerond naar het even getal.

  • 2 In afwijking van het eerste lid wordt bij toepassing van de hoofdstukken V, VI en VII van de Wet geluidhinder, bij de vaststelling van een verschil tussen twee geluidsbelastingen, de afronding slechts toegepast op het resultaat van de berekening van het verschil.

Artikel 1.4

[Regeling vervallen per 01-01-2024]

Het effect van de samenloop van de verschillende geluidsbronnen, bedoeld in artikel 110f, eerste lid, van de Wet geluidhinder en artikel 11.33, zevende lid, onderdeel c, van de Wet milieubeheer, wordt bepaald overeenkomstig de in hoofdstuk 2 van bijlage I bij deze regeling beschreven rekenmethode.

Artikel 1.5

[Regeling vervallen per 01-01-2024]

Indien de geluidsbelasting wordt bepaald ter plaatse van een gevel, wordt slechts rekening gehouden met het invallende geluid.

Artikel 1.6

[Regeling vervallen per 01-01-2024]

Met rekenmethoden en meetmethoden als bedoeld in deze regeling worden gelijkgesteld rekenmethoden en meetmethoden die zijn vastgesteld in een andere lidstaat van de Europese Unie dan wel in een staat, niet zijnde een lidstaat van de Europese Unie, die partij is bij een daartoe strekkend of mede daartoe strekkend verdrag dat Nederland bindt, en een nauwkeurigheid bieden die ten minste gelijkwaardig is aan het niveau dat met de in deze regeling genoemde meetmethoden wordt nagestreefd.

Hoofdstuk 2. Voorschriften voor industrieterreinen

[Regeling vervallen per 01-01-2024]

Artikel 2.1

[Regeling vervallen per 01-01-2024]

In dit hoofdstuk wordt verstaan onder:

  • geluidsbron: geluidafstralend toestel, apparaat, gebouw of activiteit, dan wel een combinatie hiervan, binnen een inrichting of industrieterrein;

  • immissiepunt: plaats waarop het equivalent geluidsniveau wordt bepaald;

  • immissierelevante bronsterkte: geluidsvermogensniveau van een denkbeeldige bron, gelegen in het centrum van de werkelijke geluidsbron, die in de richting van het immissiepunt dezelfde geluiddrukniveaus veroorzaakt als de werkelijke geluidsbron;

  • representatieve bedrijfssituatie: toestand waarbij de voor de geluidproductie van de inrichting relevante omstandigheden kenmerkend zijn voor een bedrijfsvoering bij volledige capaciteit in het te beschouwen gedeelte van het etmaal.

Artikel 2.2

[Regeling vervallen per 01-01-2024]

  • 1 Indien de vaststelling van de geluidsbelasting in dB(A) vanwege een industrieterrein plaatsvindt ten behoeve van de vaststelling of wijziging van een geluidszone rond dat terrein, bevindt het immissiepunt zich op een hoogte van vijf meter boven het maaiveld.

  • 2 Indien de vaststelling van de geluidsbelasting in dB(A) vanwege een industrieterrein plaatsvindt ten behoeve van de vaststelling van de geluidsbelasting van de gevel van woningen, of andere geluidsgevoelige gebouwen, bevindt het immissiepunt zich op het punt van de gevel, waar de hoogste geluidsbelasting optreedt.

Artikel 2.3

[Regeling vervallen per 01-01-2024]

  • 1 De bepaling van het equivalent geluidsniveau vanwege een industrieterrein vindt plaats volgens een van de methoden van de Handleiding meten en rekenen industrielawaai 1999, onder de in genoemde handleiding bepaalde voorwaarden.

  • 4 Direct dan wel zo spoedig mogelijk na de bekendmaking van een besluit waarin bij de bepaling van het equivalent geluidsniveau vanwege een industrieterrein of een gedeelte daarvan, een aftrek bedoeld in het tweede lid is toegepast, wordt van dat besluit mededeling gedaan aan de bestuursorganen, bedoeld in het derde lid.

Artikel 2.4

[Regeling vervallen per 01-01-2024]

Van de in artikel 2.3, eerste lid, bedoelde methoden kan geheel of gedeeltelijk worden afgeweken indien aannemelijk wordt gemaakt dat de vervangende werkwijze:

  • a. een belangrijke tijdsbesparing of kostenbesparing oplevert en in de betreffende situatie nagenoeg even nauwkeurig is als een van de bedoelde methoden,

  • b. in de betreffende situatie belangrijk nauwkeuriger is dan een van de bedoelde methoden, of

  • c. voldoende nauwkeurig is en geen van de bedoelde methoden in de betreffende situatie leidt tot een voldoende representatief equivalent geluidsniveau.

Hoofdstuk 3. Voorschriften voor wegen in het kader van de wet geluidhinder

[Regeling vervallen per 01-01-2024]

Artikel 3.1

[Regeling vervallen per 01-01-2024]

Dit hoofdstuk is van toepassing op de bepaling van de equivalente geluidsniveaus en van de geluidsbelasting bij:

  • a. de aanleg en reconstructie van wegen die niet zijn aangegeven op de geluidplafondkaart;

  • b. de sanering van de op grond van artikel 88, eerste lid, van de Wet geluidhinder, zoals dat luidde voor 1 januari 2007, aan Onze Minister gemelde aanwezige woningen, andere geluidsgevoelige gebouwen en geluidsgevoelige terreinen, voor zover die zijn gemeld vanwege de ondervonden geluidsbelasting van wegen die niet zijn aangegeven op de geluidplafondkaart;

  • c. de projectie van woningen, andere geluidsgevoelige gebouwen en geluidsgevoelige terreinen binnen de zones van wegen, bedoeld in artikel 74 van de Wet geluidhinder.

Artikel 3.2

[Regeling vervallen per 01-01-2024]

  • 1 Het equivalent geluidsniveau wordt bepaald volgens de in hoofdstuk 2 van bijlage III bij deze regeling beschreven Standaardrekenmethode 2.

  • 2 In afwijking van het eerste lid kan het equivalent geluidsniveau worden bepaald volgens de in hoofdstuk 1 van bijlage III bij deze regeling beschreven Standaardrekenmethode 1, indien de desbetreffende situatie valt binnen het toepassingsgebied van die Standaardrekenmethode 1.

  • 3 In afwijking van het eerste en tweede lid kan het equivalent geluidsniveau tevens worden bepaald volgens de Standaardmeetmethode, bedoeld in hoofdstuk 3 van bijlage III bij deze regeling, indien de desbetreffende situatie valt binnen het toepassingsgebied van die Standaardmeetmethode.

Artikel 3.3

[Regeling vervallen per 01-01-2024]

Indien een spoorweg onderdeel is van een weg:

  • a. kan voor de bepaling van het equivalent geluidsniveau vanwege deze spoorweg gebruik worden gemaakt van hoofdstuk 4, van de emissiegetallen voor trams uit bijlage III, of van op metingen gebaseerde emissiegetallen, en

  • b. is het equivalent geluidsniveau vanwege de weg gelijk aan de som van het onder a bepaalde equivalent geluidsniveau en het met toepassing van dit hoofdstuk bepaalde equivalent geluidsniveau als gevolg van het wegverkeer op die weg.

Artikel 3.4

[Regeling vervallen per 01-01-2024]

  • 1 De ingevolge artikel 110g van de Wet geluidhinder toe te passen aftrek op de geluidsbelasting vanwege een weg, van de gevel van woningen of van andere geluidsgevoelige gebouwen of aan de grens van geluidsgevoelige terreinen bedraagt:

  • 2 In afwijking van het eerste lid wordt bij de vaststelling van een verschil tussen twee geluidsbelastingen, uitgegaan van:

    • a. de bij de vastgestelde waarde gehanteerde waarde voor de toe te passen aftrek ingevolge artikel 110g van de Wet geluidhinder indien één van de geluidsbelastingen betrekking heeft op een vastgestelde ten hoogste toelaatbare waarde waarbij de in het eerste lid, onder a of b, genoemde waarde is gehanteerd en de berekening van de andere geluidsbelasting betrekking heeft op een situatie met een representatief te achten snelheid voor lichte motorvoertuigen van 70 km/uur of meer;

    • b. de in het eerste lid onder c, d of e genoemde waarden voor de toe te passen aftrek ingevolge artikel 110g van de Wet geluidhinder in de overige gevallen.

Artikel 3.5

[Regeling vervallen per 01-01-2024]

  • 1 Bij de berekening van het equivalent geluidsniveau vanwege een weg wordt voor wegen waarvoor de representatief te achten snelheid van lichte motorvoertuigen 70 kilometer per uur of meer bedraagt, 2 dB in mindering gebracht op de wegdekcorrectie bepaald overeenkomstig bijlage III bij deze regeling of als het wegdek bestaat uit dicht asfaltbeton, in afwijking van het gestelde in paragraaf 1.5 en 2.4.2 van bijlage III een wegdekcorrectie van 2 dB in rekening gebracht.

  • 2 In afwijking van het eerste lid wordt 1 dB in mindering gebracht voor wegen waarvoor de representatief te achten snelheid van lichte motorvoertuigen 70 kilometer per uur of meer bedraagt en het wegdek bestaat uit een elementenverharding of een van de volgende wegdektypen:

    • a. Zeer Open Asfalt Beton;

    • b. tweelaags Zeer Open Asfalt Beton, met uitzondering van tweelaags Zeer Open Asfalt Beton fijn;

    • c. uitgeborsteld beton;

    • d. geoptimaliseerd uitgeborsteld beton;

    • e. oppervlakbewerking.

Artikel 3.6

[Regeling vervallen per 01-01-2024]

In afwijking van artikel 1.3 wordt voor de berekening van het akoestisch effect van een wijziging op of aan een weg:

  • a. indien een hogere waarde voor de ten hoogste toelaatbare geluidsbelasting is vastgesteld in dB, gerekend met het afgeronde getal van de hogere waarde, zoals deze is vastgesteld;

  • b. indien een hogere waarde voor de ten hoogste toelaatbare geluidsbelasting is vastgesteld in dB(A), gerekend met de op grond van artikel 3.7 bepaalde onafgeronde waarde in dB;

  • c. voor de heersende waarde van de geluidsbelasting gerekend met het onafgeronde getal, waarbij uitvoering is gegeven aan de artikelen 3.4 en 3.5;

  • d. voor de geluidsbelasting in het toekomstige maatgevende jaar gerekend met het onafgeronde getal, waarbij uitvoering is gegeven aan de artikelen 3.4 en 3.5.

Artikel 3.7

[Regeling vervallen per 01-01-2024]

Indien een ten hoogste toelaatbare geluidsbelasting vanwege een weg in dB(A) is vastgesteld, wordt die waarde omgerekend tot de waarde van de geluidsbelasting in dB door de getalswaarde van de vastgestelde waarde te verminderen met het onafgeronde verschil tussen de onafgeronde heersende geluidsbelasting in dB(A) en de onafgeronde heersende geluidsbelasting in dB.

Artikel 3.8

[Regeling vervallen per 01-01-2024]

  • 1 De geluidsbelasting van woningen, andere geluidsgevoelige gebouwen en geluidsgevoelige terreinen, vanwege een weg, een weggedeelte of een combinatie van weggedeelten, aangegeven op de geluidplafondkaart, is de geluidsbelasting vanwege alle op die kaart aangegeven delen van wegen.

  • 2 De equivalente geluidsniveaus voor de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden bepaald op basis van de in het geluidregister opgenomen brongegevens, waarbij de plafondcorrectiewaarde wordt opgeteld bij het emissiegetal (E), berekend volgens formule 1.3 uit paragraaf 1.5 van bijlage III bij deze regeling, dan wel bij de emissietermen (LE), berekend volgens formule 2.3 uit paragraaf 2.4 van bijlage III bij deze regeling.

  • 3 Bij de bepaling van de equivalente geluidsniveaus voor de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden, in aanvulling op het tweede lid, tevens betrokken alle overige kenmerken van de bron en de omgeving, voor zover relevant voor het berekenen van de geluidsbelasting.

Hoofdstuk 4. Voorschriften voor spoorwegen in het kader van de wet geluidhinder

[Regeling vervallen per 01-01-2024]

Artikel 4.1

[Regeling vervallen per 01-01-2024]

Dit hoofdstuk is van toepassing op de bepaling van de equivalente geluidsniveaus en van de geluidsbelasting bij:

  • a. de aanleg en wijziging van spoorwegen die daartoe zijn aangegeven op de kaart, bedoeld in artikel 106 van de Wet geluidhinder;

  • b. de sanering van bij het Besluit geluidhinder aangegeven woningen, andere geluidsgevoelige gebouwen en geluidsgevoelige terreinen vanwege de ondervonden geluidsbelasting van spoorwegen die zijn aangegeven op de kaart, bedoeld in onderdeel a;

  • c. de projectie van woningen, andere geluidsgevoelige gebouwen en geluidsgevoelige terreinen binnen de zones van spoorwegen die zijn aangegeven op de kaart, bedoeld in onderdeel a, of op de geluidplafondkaart.

Artikel 4.2

[Regeling vervallen per 01-01-2024]

  • 1 In dit hoofdstuk wordt verstaan onder:

    • emissiegetal: getal dat de sterkte aangeeft van het geëmitteerde geluid ten gevolge van het gezamenlijk spoorvoertuigverkeer op een bepaald spoorweggedeelte, zo nodig gespecificeerd per oktaafband en per onderscheiden bronhoogte;

    • emissietraject: gedeelte van een spoorweg waarop de geluidemissie constant kan worden verondersteld;

    • spoorvoertuigcategorie: verzameling van spoorvoertuigtypen die dezelfde geluidemissiekenmerken hebben;

    • spoorvoertuigtype: verzameling spoorvoertuigen die technisch en uiterlijk dezelfde kenmerken hebben.

  • 2 Elk spoorvoertuig dat van een bepaald traject van de spoorweg gebruik maakt, wordt voor de toepassing van deze regeling toegedeeld aan een spoorvoertuigtype en een spoorvoertuigcategorie als bedoeld in hoofdstuk 1 van bijlage IV bij deze regeling.

Artikel 4.3

[Regeling vervallen per 01-01-2024]

De beheerder van een spoorweg als bedoeld in artikel 4.1, onder a, draagt zorg voor de samenstelling en het beheer van een emissieregister, waarin de gegevens, genoemd in hoofdstuk 7 van bijlage IV bij deze regeling, worden vastgelegd.

Artikel 4.4

[Regeling vervallen per 01-01-2024]

  • 1 De berekening van het emissiegetal van een bepaald emissietraject wordt uitgevoerd volgens de in hoofdstuk 2 en 3 van bijlage IV bij deze regeling beschreven methode.

  • 2 In gevallen waarin de in het eerste lid genoemde methode leidt tot een voor de betreffende situatie onvoldoende representatief emissiegetal, wordt het emissiegetal bepaald volgens de in hoofdstuk 6 van bijlage IV bij deze regeling beschreven methode.

Artikel 4.5

[Regeling vervallen per 01-01-2024]

  • 1 Bij de bepaling van het equivalent geluidsniveau vanwege een spoorweg, als bedoeld in artikel 4.1, onderdeel a, wordt rekening gehouden met de emissiegegevens zoals vastgelegd in het emissieregister, bedoeld in artikel 4.3, of, indien het een berekening betreft voor het toekomstig maatgevende jaar, met de emissiegetallen van de relevante emissietrajecten bepaald overeenkomstig artikel 4.4.

  • 2 De Minister kan, na overleg met de instanties die op de desbetreffende locatie de spoorweginfrastructuur en het gebruik daarvan beheren, afwijking toestaan van het eerste lid, indien de daar bedoelde gegevens onvoldoende representatief zijn.

Artikel 4.6

[Regeling vervallen per 01-01-2024]

  • 1 Het equivalent geluidsniveau wordt berekend volgens de in hoofdstuk 5 van bijlage IV bij deze regeling beschreven Standaardrekenmethode 2.

  • 2 In afwijking van het eerste lid kan het equivalent geluidsniveau worden bepaald volgens de in hoofdstuk 4 van bijlage IV bij deze regeling beschreven Standaardrekenmethode 1, indien de desbetreffende situatie valt binnen het toepassingsgebied van Standaardrekenmethode 1.

  • 3 In afwijking van het eerste en tweede lid kan het equivalent geluidsniveau tevens worden bepaald volgens de Standaardmeetmethode, bedoeld in hoofdstuk 6 van bijlage IV bij deze regeling, indien de desbetreffende situatie valt binnen het toepassingsgebied van die Standaardmeetmethode.

Artikel 4.7

[Regeling vervallen per 01-01-2024]

Artikel 4.8

[Regeling vervallen per 01-01-2024]

Indien een ten hoogste toelaatbare geluidsbelasting vanwege een spoorweg in dB(A) is vastgesteld, wordt die waarde omgerekend tot de waarde voor de geluidsbelasting in dB door de getalswaarde te verminderen met 2.

Artikel 4.9

[Regeling vervallen per 01-01-2024]

  • 1 De geluidsbelasting van woningen, andere geluidsgevoelige gebouwen en geluidsgevoelige terreinen, vanwege een spoorweg, een gedeelte van een spoorweg of een combinatie van spoorwegen, aangegeven op de geluidplafondkaart, is de geluidsbelasting vanwege alle op die kaart aangegeven delen van spoorwegen.

  • 2 De equivalente geluidsniveaus voor de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden bepaald op basis van de in het geluidregister opgenomen brongegevens, waarbij de plafondcorrectiewaarde wordt opgeteld bij het emissiegetal (E), berekend volgens formule 2.1 uit paragraaf 2.1.1 van bijlage IV bij deze regeling, dan wel bij de emissiegetallen (LE), berekend volgens de formules 3.1a tot en met 3.1e uit paragraaf 3.4 van bijlage IV bij deze regeling.

  • 3 Bij de bepaling van de equivalente geluidsniveaus voor de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden, in aanvulling op het tweede lid, tevens betrokken alle overige kenmerken van de bron en de omgeving, voor zover relevant voor het berekenen van de geluidsbelasting.

Hoofdstuk 5. Voorschriften voor wegen en spoorwegen in het kader van de wet milieubeheer

[Regeling vervallen per 01-01-2024]

Artikel 5.1

[Regeling vervallen per 01-01-2024]

Dit hoofdstuk is van toepassing op de bepaling van de geluidproductie van, de equivalente geluidsniveaus en de geluidsbelasting vanwege wegen en spoorwegen die zijn aangegeven op de geluidplafondkaart, ten behoeve van de vaststelling, wijziging en naleving van geluidproductieplafonds en het opstellen van saneringsplannen.

Artikel 5.2

[Regeling vervallen per 01-01-2024]

In dit hoofdstuk wordt verstaan onder:

  • afschermend object: ter verbetering van de kwaliteit van het milieu direct langs een weg of spoorweg geplaatste wallen en schermen;

  • bronregisterlijn: lijn die betrekking heeft op een gedeelte van een weg of spoorweg en die gebruikt wordt als rijlijn in de zin van bijlage III bij deze regeling of bronlijn in de zin van bijlage IV bij deze regeling bij bepaling van het equivalent geluidsniveau ten behoeve van de geluidproductie volgens de in bijlage V bij deze regeling gegeven regels;

  • equivalent geluidsniveau: gemiddelde geluidsniveau over lange termijn ten behoeve van de berekening van Lday, Levening en Lnight als bedoeld in bijlage I van richtlijn nr. 2002/49/EG van het Europees Parlement en de Raad van de Europese Unie van 25 juni 2002 inzake de evaluatie en de beheersing van omgevingslawaai (PbEG L 189);

  • referentiepunt: referentiepunt als bedoeld in artikel 11.19 van de Wet milieubeheer;

  • saneringsplan: saneringsplan als bedoeld in artikel 11.56 van de Wet milieubeheer.

Artikel 5.3

[Regeling vervallen per 01-01-2024]

  • 1 De equivalente geluidsniveaus ten behoeve van de berekening van de geluidproductie worden berekend volgens Standaardrekenmethode 2, bedoeld in hoofdstuk 2 van bijlage III bij deze regeling en in hoofdstuk 5 van bijlage IV bij deze regeling, waarbij geldt dat, indien en voor zover van toepassing, tevens hoofdstuk 1 van bijlage V bij deze regeling wordt toegepast en waarbij:

    • a. als het een weg betreft: alle op de geluidplafondkaart aangegeven delen van wegen in de berekening worden meegenomen;

    • b. als het een spoorweg betreft: alle op de geluidplafondkaart aangegeven delen van spoorwegen in de berekening worden meegenomen.

  • 3 Onverminderd het eerste lid is op de berekening van de equivalente geluidsniveaus ten behoeve van de berekening van de geluidproductie, bedoeld in artikel 11.22, vierde lid, van de Wet milieubeheer, indien en voor zover van toepassing, tevens hoofdstuk 3 van bijlage V bij deze regeling van toepassing.

  • 4 Bij de berekening van de equivalente geluidsniveaus ten behoeve van de berekening van de geluidproductie voor de vaststelling of wijziging van geluidproductieplafonds, wordt de plafondcorrectiewaarde opgeteld bij:

    • a. als het een weg betreft: het emissiegetal (E), berekend volgens formule 1.3 uit paragraaf 1.5 van bijlage III bij deze regeling, dan wel de emissietermen (LE), bepaald volgens formule 2.3 uit paragraaf 2.4 van bijlage III bij deze regeling;

    • b. als het een spoorweg betreft: het emissiegetal (E), berekend volgens formule 2.1 uit paragraaf 2.1.1 van bijlage IV bij deze regeling, dan wel de emissiegetallen (LE), bepaald volgens de formules 3.1a tot en met 3.1e uit paragraaf 3.4 van bijlage IV bij deze regeling.

  • 5 De waarde van de geluidproductie wordt afgerond op één decimaal.

  • 6 De geluidproductie heeft betrekking op een kalenderjaar.

Artikel 5.4

[Regeling vervallen per 01-01-2024]

De geluidsbelasting van een geluidsgevoelig object vanwege de betrokken weg of spoorweg is de geluidsbelasting van de hoogst belaste gevel van dat object, de hoogste geluidsbelasting op 1,5 meter boven lokaal maaiveld op de grens van een standplaats als bedoeld in artikel 1, onderdeel j, van de Wet op de huurtoeslag dan wel de hoogste geluidsbelasting op de grens van een ligplaats in het water, bestemd om door een woonschip te worden ingenomen, op een hoogte van 1 meter boven lokaal maaiveld direct grenzend aan de ligplaats.

Artikel 5.5

[Regeling vervallen per 01-01-2024]

Bij een verzoek tot wijziging van een geluidproductieplafond op grond van artikel 11.63 van de Wet milieubeheer wordt de hoogte van het geluidproductieplafond berekend op basis van:

  • a. de brongegevens behorende bij het geldende geluidproductieplafond of, voor zover van toepassing, de gewijzigde brongegevens, bedoeld in paragraaf 1.4 van bijlage VI, en

  • b. de in het saneringsplan opgenomen saneringsmaatregelen.

Artikel 5.6

[Regeling vervallen per 01-01-2024]

Artikel 5.7

[Regeling vervallen per 01-01-2024]

  • 1 De geluidsbelasting van geluidsgevoelige objecten vanwege een weg, een weggedeelte of een combinatie van weggedeelten is de geluidsbelasting vanwege alle op de geluidplafondkaart aangegeven delen van wegen.

  • 2 De equivalente geluidsniveaus ten behoeve van de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden bepaald:

    • a. met overeenkomstige toepassing van artikel 3.2;

    • b. op basis van de in het geluidregister opgenomen brongegevens, waarbij de plafondcorrectiewaarde wordt opgeteld bij het emissiegetal (E), berekend volgens formule 1.3 uit paragraaf 1.5 van bijlage III bij deze regeling, dan wel bij de emissietermen (LE), bepaald volgens formule 2.3 uit paragraaf 2.4 van bijlage III bij deze regeling.

  • 3 Indien het tweede lid wordt toegepast in het kader van artikel 11.30, eerste en tweede lid, 11.42 of 11.63 van de Wet milieubeheer, worden daarbij tevens de brongegevens betrokken behorende bij een verzoek tot vaststelling of wijziging van geluidproductieplafonds of behorende bij een voorgenomen ambtshalve besluit tot vaststelling of wijziging van geluidproductieplafonds.

  • 4 Indien het tweede lid wordt toegepast ten behoeve van het opstellen van saneringsplannen, is daarbij tevens bijlage VI bij deze regeling van toepassing.

  • 5 Bij de bepaling van de equivalente geluidsniveaus voor de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden, in aanvulling op het tweede lid, tevens betrokken alle overige kenmerken van de bron en de omgeving, voor zover relevant voor het berekenen van de geluidsbelasting.

Artikel 5.8

[Regeling vervallen per 01-01-2024]

  • 1 De geluidsbelasting van geluidsgevoelige objecten vanwege een spoorweg, een gedeelte van een spoorweg of een combinatie van spoorwegen, is de geluidsbelasting vanwege alle op de geluidplafondkaart aangegeven delen van spoorwegen.

  • 2 De equivalente geluidsniveaus ten behoeve van de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden bepaald:

    • a. met overeenkomstige toepassing van artikel 4.6;

    • b. op basis van de in het geluidregister opgenomen brongegevens, waarbij de plafondcorrectiewaarde wordt opgeteld bij het emissiegetal (E), berekend volgens formule 2.1 uit paragraaf 2.1.1 van bijlage IV, dan wel bij de emissiegetallen (LE), berekend volgens de formules 3.1a tot en met 3.1e uit paragraaf 3.4 van bijlage IV bij deze regeling.

  • 3 Indien het tweede lid wordt toegepast in het kader van artikel 11.30, eerste en tweede lid, 11.42 of 11.63 van de Wet milieubeheer, worden daarbij tevens de brongegevens betrokken behorende bij een verzoek tot vaststelling of wijziging van geluidproductieplafonds of behorende bij een voorgenomen ambtshalve besluit tot vaststelling of wijziging van geluidproductieplafonds.

  • 4 Indien het tweede lid wordt toegepast ten behoeve van het opstellen van saneringsplannen, is daarbij tevens bijlage VI bij deze regeling van toepassing.

  • 5 Bij de bepaling van de equivalente geluidsniveaus voor de berekening van de geluidsbelasting, bedoeld in het eerste lid, worden, in aanvulling op het tweede lid, tevens betrokken alle overige kenmerken van de bron en de omgeving, voor zover relevant voor het berekenen van de geluidsbelasting.

Artikel 5.9

[Regeling vervallen per 01-01-2024]

  • 3 Bij toepassing van het eerste lid wordt geen rekening gehouden met een bouwkundige constructie als bedoeld in artikel 1b, vierde lid, van de Wet geluidhinder die is vastgelegd in de gebruiksregels of bouwregels van een bestemmingsplan.

Artikel 5.10

[Regeling vervallen per 01-01-2024]

  • 1 Het akoestisch onderzoek, bedoeld in artikel 11.33 van de Wet milieubeheer, heeft betrekking op ten minste de volgende referentiepunten:

    • a. de referentiepunten die in het register worden opgenomen of waarvan de positie wijzigt door een aan te leggen of te wijzigen weg of spoorweg;

    • b. de referentiepunten waarop de geluidproductie, berekend op basis van de brongegevens behorende bij de geluidproductieplafonds zoals die zouden gelden na vaststelling of wijziging van het geluidproductieplafond exclusief het effect van de geluidbeperkende maatregelen die geen onderdeel zijn van de geldende brongegevens, hoger is dan de geldende geluidproductieplafonds in de betreffende referentiepunten, en

    • c. de referentiepunten waarop de geluidproductie, berekend op basis van de brongegevens behorende bij de geluidproductieplafonds zoals die zouden gelden na vaststelling of wijziging van het geluidproductieplafond afwijken van de geldende geluidproductieplafonds in de betreffende referentiepunten, voor zover deze niet vallen onder onderdeel b.

    Daarbij geldt dat de referentiepunten, bedoeld onder b en c, niet verder liggen dan 1,0 kilometer van het deel van de weg of spoorweg waarvoor bij de berekening, bedoeld onder b, respectievelijk c, gewijzigde brongegevens zijn gehanteerd ten opzichte van de geldende brongegevens in het geluidregister.

  • 2 Het akoestisch onderzoek voor vaststelling of wijziging van een geluidproductieplafond heeft betrekking op alle geluidsgevoelige objecten die liggen binnen het gebied:

    • a. waarin het betreffende referentiepunt ligt, en

    • b. dat begrensd wordt door de landsgrenzen, de as van de weg of spoorweg en twee lijnen loodrecht op de as van de weg of spoorweg en op de halve afstand tot de in de lengterichting van de weg of spoorweg gezien naastliggende referentiepunten.

  • 3 In afwijking van het tweede lid, onderdeel b, is er in het geval de weg of spoorweg van de betreffende beheerder eindigt slechts een naastliggend referentiepunt en strekt het akoestisch onderzoek zich aan de andere zijde uit tot alle geluidsgevoelige objecten.

  • 4 In afwijking van het tweede en derde lid heeft het akoestisch onderzoek geen betrekking op geluidsgevoelige objecten die naar redelijke verwachting bij volledige benutting van het geluidproductieplafond zoals dat zou gelden na vaststelling of wijziging van het geluidproductieplafond, in de situatie dat er geen geluidbeperkende maatregelen zouden zijn getroffen, een geluidsbelasting ondervinden die lager is dan de voorkeurswaarde.

  • 5 Het tweede lid is niet van toepassing op de referentiepunten genoemd in het eerste lid, onderdeel c.

Artikel 5.11

[Regeling vervallen per 01-01-2024]

  • 1 Bij berekening van de geluidproductie en van de geluidsbelasting vanwege een weg wordt voor wegen waarvoor de representatief te achten snelheid van lichte motorvoertuigen 70 kilometer per uur of meer bedraagt, 2 dB in mindering gebracht op de wegdekcorrectie bepaald overeenkomstig bijlage III bij deze regeling of als het wegdek bestaat uit dicht asfaltbeton, in afwijking van het gestelde in paragraaf 1.5 en 2.4.2 van bijlage III een wegdekcorrectie van 2 dB in rekening gebracht.

  • 2 In afwijking van het eerste lid wordt 1 dB in mindering gebracht voor wegen waarvoor de representatief te achten snelheid van lichte motorvoertuigen 70 kilometer per uur of meer bedraagt en het wegdek bestaat uit een elementenverharding of een van de volgende wegdektypen:

    • a. Zeer Open Asfalt Beton;

    • b. tweelaags Zeer Open Asfalt Beton, met uitzondering van tweelaags Zeer Open Asfalt Beton fijn;

    • c. uitgeborsteld beton;

    • d. geoptimaliseerd uitgeborsteld beton;

    • e. oppervlakbewerking.

Hoofdstuk 6. Binnen gebouwen

[Regeling vervallen per 01-01-2024]

Artikel 6.1

[Regeling vervallen per 01-01-2024]

In afwijking van artikel 1.1 wordt in dit hoofdstuk verstaan onder gevel: uitwendige scheidingsconstructie als bedoeld in artikel 1.1 van het Bouwbesluit 2012.

Artikel 6.2

[Regeling vervallen per 01-01-2024]

  • 1 Het equivalent geluidsniveau binnen een gebouw ten behoeve van de vaststelling van de geluidsbelasting ter plaatse wordt bepaald door het equivalent geluidsniveau buiten het gebouw, bepaald overeenkomstig de hoofdstukken 2, 3, 4 of 5, te verminderen met de geluidwering van de gevel.

  • 2 De geluidwering van een gevel kan worden bepaald door middel van meting of berekening.

Artikel 6.3

[Regeling vervallen per 01-01-2024]

  • 1 De meting van de geluidwering van een gevel wordt uitgevoerd volgens de in hoofdstuk 4 van NEN 5077:2006 beschreven meetmethode.

  • 2 De berekening van de geluidwering van een gevel wordt uitgevoerd volgens de in NEN-EN 12354-3 beschreven rekenmethode, inclusief de informatieve annexen uit die norm, toegepast op de wijze, beschreven in NPR 5272:2003.

  • 3 Bij de berekening van de geluidwering van de gevel wordt uitgegaan van de situatie zoals die voor een bepaling door metingen van de geluidwering volgens NEN 5077:2006 van toepassing zou zijn.

Artikel 6.4

[Regeling vervallen per 01-01-2024]

  • 1 Bij de bepaling van de geluidwering van de gevel wordt rekening gehouden met:

    • a. het geluidspectrum, behorend bij het equivalent geluidsniveau buiten het gebouw;

    • b. de structuur van de gevel;

    • c. de verschillen in het equivalent geluidsniveau buiten het gebouw door de positie van de geluidsbron, de bijbehorende afscherming door gevelvlakken en bijbehorende reflecties via gevelvlakken;

    • d. de geluidwerende kwaliteit en de afmetingen van de elementen waaruit de gevel is opgebouwd, waarbij in ieder geval onderscheid wordt gemaakt in: materialen, kieren, naden en voorzieningen voor luchtverversing;

    • e. de geluidabsorptie van het betreffend vertrek.

  • 2 De geluidwering van een gevel waarbij ventilatie kan plaatsvinden anders dan door het openen van ramen, wordt bepaald met gesloten en afgedichte ventilatieopeningen.

  • 3 Bij toepassing van het tweede lid wordt gerekend met een opening in de gevel waarvan de akoestische prestatie bedraagt: een element-genormeerd niveauverschil van Dn,e = 40 – 10 lg qv.dB in elke beschouwde octaafband, waarbij de luchthoeveelheid qv in dm3/s de helft bedraagt van de op grond van de artikelen 3.28 en 3.29 van het Bouwbesluit 2012 voor nieuwe woongebouwen geëiste hoeveelheid.

  • 4 In afwijking van het tweede lid wordt de geluidwering van een gevel waarin ventilatievoorzieningen zijn aangebracht met een hogere akoestische prestatie dan genoemd in het derde lid, bepaald met geopende dan wel geopend geachte ventilatievoorzieningen.

Artikel 6.5

[Regeling vervallen per 01-01-2024]

  • 1 Bij de bepaling van de geluidwering van de gevel wordt uitgegaan van het geluidspectrum behorend bij het equivalent geluidsniveau buiten het gebouw, waarbij voor wegverkeer en spoorwegverkeer wordt uitgegaan van de geluidspectra die worden gegeven met de herleidingswaarden Ki in tabel 6.5, tenzij anders wordt vermeld en gemotiveerd.

    Tabel 6.5

    Spectrum

    Ki [dB] voor de octaafbanden met middenfrequentie [Hz]

     

    125

    i = 1

    250

    i = 2

    500

    i = 3

    1000

    i = 4

    2000

    i = 5

    spoorwegverkeersgeluid

    –27

    –17

    –9

    –4

    –4

    wegverkeersgeluid

    –14

    –10

    –7

    –4

    –6

  • 2 In afwijking van het eerste lid wordt bij spoorwegverkeersgeluid het in het eerste lid gegeven spectrum voor wegverkeersgeluid toegepast, indien in het maatgevende jaar op een spoorweg meer dan 30% spoorvoertuigen passeren behorende tot de spoorvoertuigcategorieën 4, 5 of 11, bedoeld in hoofdstuk 1 van bijlage IV bij deze regeling.

Hoofdstuk 7. Karteringsvoorschriften

[Regeling vervallen per 01-01-2024]

Artikel 7

[Regeling vervallen per 01-01-2024]

Dit hoofdstuk en de daarbij behorende bijlage VII zijn van toepassing bij het opstellen van geluidsbelastingkaarten.

Deze regeling zal met de bijlagen en de toelichting in de Staatscourant worden geplaatst.

De

Staatssecretaris

van Infrastructuur en Milieu,

J.J. Atsma

Bijlage I. behorende bij de artikelen 1.2 en 1.4 van het Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024]

Hoofdstuk 1. Akoestisch rapport

[Regeling vervallen per 01-01-2024]

Het akoestisch rapport bevat informatie betreffende alle voor het onderzoeksresultaat van belang zijnde aspecten. In het rapport worden in elk geval de volgende gegevens opgenomen:

§ 1:. Organisatorische en algemene gegevens

[Regeling vervallen per 01-01-2024]

  • 1.1. Naam van de opdrachtgever van het akoestisch onderzoek.

  • 1.2. Naam van de instantie die het onderzoek heeft uitgevoerd.

  • 1.3. Datum van het onderzoek.

  • 1.4. Aanleiding en doel van het onderzoek, onder vermelding van de artikelen van de Wet geluidhinder of de Wet milieubeheer op grond waarvan het akoestisch onderzoek is vereist.

§ 2:. De toegepaste reken- en/of meetmethode

[Regeling vervallen per 01-01-2024]

  • 2.1. In het akoestisch rapport dient te worden aangetoond dat de betreffende situatie valt binnen het toepassingsbereik van de gebruikte methode.

  • 2.2. Indien een andere methode dan de in deze regeling of de in artikel 2.3, eerste lid, bedoelde handleiding beschreven methode is toegepast, wordt de noodzaak daarvan aangegeven en de betreffende methode beschreven en verantwoord.

  • 2.3. Indien een rekenmethode is toegepast, vermeldt het rapport alle gegevens die in de berekening zijn ingevoerd en indien het emissieregister of het geluidregister is geraadpleegd, ook de datum waarop dit is gebeurd c.q. het versienummer van het gebruikte bestand.

§ 3:. Inhoudelijke gegevens

[Regeling vervallen per 01-01-2024]

  • 3.1. Een of meer kaarten en/of tekeningen op een zodanige schaal dat daarmee een duidelijk beeld wordt gegeven van bestaande en/of geprojecteerde (spoor)weggedeelten, industrieterreinen en woningen, andere al dan niet geluidsgevoelige gebouwen alsmede geluidsgevoelige terreinen dan wel geluidsgevoelige objecten, waarop het akoestisch onderzoek betrekking heeft.

  • 3.2. De waarneempunten.

  • 3.3. De situering, akoestisch relevante dimensies en de aard van de doorgerekende geluidsafschermende maatregelen, zowel op oorspronkelijk kaartmateriaal als in de vorm van de geschematiseerde computerinvoer.

  • 3.4. De situering, akoestisch relevante dimensies en de aard van de overige geluidsreflecterende en -afschermende objecten of constructies.

  • 3.5. De scheidingslijn(en) tussen akoestisch harde en zachte bodemvlakken, met een aanduiding van de aard van de bodem.

  • 3.6. In akoestisch gecompliceerde situaties maakt een grafische weergave van de bij de (computer-) berekeningen gehanteerde geometrische invoergegevens onderdeel uit van de rapportage.

§ 4:. Gegevens betreffende wegverkeerslawaai

[Regeling vervallen per 01-01-2024]

In het akoestisch rapport betreffende wegverkeerslawaai worden vermeld:

  • 4.1. Voor de betreffende weg(gedeelten): het type weg, het type wegdek en de aanwezigheid van akoestisch van belang zijnde hellingen van de weg en van met verkeerslichten geregelde kruisingen van wegen of snelheidsbeperkende maatregelen. En indien van toepassing, duidelijke informatie in de vorm van een tekening en/of kilometeraanduiding van voorstellen voor geluidbeperkende maatregelen.

  • 4.2. De gehanteerde verkeersintensiteiten per etmaal, de gehanteerde jaargemiddelde verkeersintensiteiten per uur in de drie etmaalperioden alsmede de verkeerssnelheden van de motorvoertuigcategorieën, genoemd in paragraaf 1.1 van bijlage III van het Reken- en meetvoorschrift geluid 2012, op de betreffende weg(gedeelten).

  • 4.3. Een onderbouwing van de onder 4.2 bedoelde gegevens, eventueel door verwijzing naar publicaties en rapporten als die algemeen toegankelijk zijn.

  • 4.4. De datum van de schatting of vaststelling van de verkeerstoestand en het jaar waarop deze betrekking heeft.

  • 4.5. Het wegdektype, de bijbehorende wegdekcorrectie en een onderbouwing hiervan, eventueel door een verwijzing naar een algemeen toegankelijke bron.

  • 4.6. De wijze waarop in een akoestisch onderzoek volgens hoofdstuk 3 van het Reken- en meetvoorschrift geluid 2012 toepassing is gegeven aan artikel 3.4 van dat hoofdstuk.

  • 4.7. Bij uitvoering van hoofdstuk 11 van de Wet milieubeheer: de wijze en resultaten van de toepassing van het criterium, bedoeld in artikel 11.29, vierde lid, van de Wet milieubeheer.

§ 5:. Gegevens betreffende spoorweglawaai

[Regeling vervallen per 01-01-2024]

In het akoestisch rapport betreffende spoorweglawaai worden vermeld:

  • 5.1. Voor de betreffende spoorweg(gedeelten): het type spoorweg, het type spoorconstructie en de aanwezigheid van kunstwerken zoals bijvoorbeeld bruggen en tunnels. En indien van toepassing, duidelijke informatie in de vorm van een tekening en/of kilometeraanduiding van voorstellen voor geluidbeperkende maatregelen.

  • 5.2. De verkeersintensiteiten en verkeerssnelheden van de spoorvoertuigtypen en de spoorvoertuigcategorieën genoemd in bijlage IV van deze regeling, op de betreffende spoorweg(gedeelten).

  • 5.3. Een onderbouwing van de onder 5.2 bedoelde gegevens, eventueel door verwijzing naar publicaties en rapporten als die algemeen toegankelijk zijn.

  • 5.4. De datum van de schatting of vaststelling van de verkeerstoestand en het jaar waarop deze betrekking heeft.

  • 5.5. Het type bovenbouw, en de bijbehorende bovenbouwcorrectieterm en een onderbouwing hiervan, eventueel door een verwijzing naar een algemeen toegankelijke bron.

  • 5.6. Indien met een afwijkende spoorstaafruwheid wordt gerekend: de meetgegevens als onderbouwing van de spoorstaafruwheid.

  • 5.7. Bij uitvoering van hoofdstuk 11 van de Wet milieubeheer: de wijze en resultaten van de toepassing van het criterium, bedoeld in artikel 11.29, vierde lid, van de Wet milieubeheer.

§ 6:. Gegevens betreffende industrielawaai

[Regeling vervallen per 01-01-2024]

De rapportage bij het akoestisch onderzoek inzake industrielawaai vermeldt:

  • 6.1. Welke invoergegevens zijn gebruikt en op welke wijze de resultaten zijn verkregen.

  • 6.2. Alle benodigde gegevens zoals beschreven in de Handleiding meten en rekenen industrielawaai 1999.

§ 7:. Gegevens betreffende de geluidwering van de gevel

[Regeling vervallen per 01-01-2024]

De rapportage bij het akoestisch onderzoek inzake de geluidwering van de gevel vermeldt:

  • 7.1. Het referentiespectrum;

  • 7.2. De invoergegevens voor berekening;

  • 7.3. De bronvermelding van de invoergegevens;

  • 7.4. De wijze waarop geventileerd kan worden terwijl aan de eisen voor de geluidwering is voldaan.

  • 7.5. Een duidelijk beeld van de situering van de gebouwen ten opzichte van het industrieterrein, de weg of de spoorweg en de samenstelling van de gevels waarop het rapport betrekking heeft.

§ 8:. Gegevens betreffende geluidsmetingen

[Regeling vervallen per 01-01-2024]

  • 8.1. Data, waarnemingsperioden en meettijden.

  • 8.2. De gebruikte meetapparatuur, microfoonopstelling, wijze van kalibreren en informatie over de signaal-stoorverhouding tijdens de metingen.

  • 8.3. Wijze waarop de meetresultaten zijn verwerkt en uitgewerkt.

  • 8.4. De meteorologische gegevens.

  • 8.5. Gespecificeerde telgegevens per motor- dan wel spoorvoertuigcategorie.

  • 8.6. Bij de meting van de geluidwering van de gevel worden tevens de adressen en ruimten waarin is gemeten vermeld, alsmede de aangetroffen situatie, indien deze anders is dan uit de tekeningen blijkt en de oorzaken indien de geluidwering niet voldoet aan de verwachting.

Hoofdstuk 2. Rekenmethode cumulatieve geluidsbelasting

[Regeling vervallen per 01-01-2024]

Deze rekenmethode wordt toegepast als er sprake is van blootstelling aan meer dan één geluidsbron. Allereerst wordt vastgesteld of van een relevante blootstelling door verschillende geluidsbronnen sprake is. Dit is alleen het geval indien de zogenaamde voorkeurswaarde wordt overschreden. In dit geval berekent de methode de gecumuleerde geluidsbelasting rekening houdend met de verschillen in dosis-effectrelaties van de verschillende geluidsbronnen. Ten behoeve van deze rekenmethode dient de geluidsbelasting bekend te zijn van ieder van de bronnen, berekend volgens het voorschrift dat voor die bronsoort geldt.

De verschillende geluidsbronnen worden hieronder aangeduid als LRL, LLL, LIL, LVL waarbij de indices respectievelijk staan voor spoorwegverkeer, luchtvaart, industrie en (weg)verkeer. De ingevolge artikel 110g van de Wet geluidhinder bij wegverkeerslawaai toe te passen aftrek wordt bij de bepaling van LVL met deze rekenmethode niet toegepast. Al deze grootheden moeten zijn uitgedrukt in Lden, met uitzondering van industrielawaai waarbij de geluidsbelasting volgens de geldende wettelijke definitie wordt bepaald.

L*RL is de geluidsbelasting vanwege wegverkeer die evenveel hinder veroorzaakt als een geluidsbelasting LRL vanwege spoorwegverkeer. L*RL wordt als volgt berekend:

L*RL = 0,95 LRL –1,40

Bovenstaande geldt mutatis mutandis voor de bronnen luchtvaart (index LL), industrie (index IL) en wegverkeer (index VL). De rekenregels hiervoor zijn:

L*LL = 0,98 LLL + 7,03

L*IL = 1,00 LIL + 1,00

L*VL = 1,00 LVL + 0,00

Als alle betrokken bronnen op deze wijze zijn omgerekend in L*-waarden, dan kan de gecumuleerde waarde worden berekend door middel van de zogenoemde energetische sommatie. De rekenregel hiervoor is:

Bijlage 250227.png

waarbij gesommeerd wordt over alle N betrokken bronnen en de index n kan staan voor RL, LL, IL en VL.

LCUM kan als volgt worden omgerekend naar de bronsoort waarvoor een wettelijke beoordeling plaatsvindt:

LRL,CUM = 1,05 LCUM + 1,47

LLL,CUM = 1,02 LCUM – 7,17

LIL,CUM = 1,00 LCUM – 1,00

LVL,CUM = 1,00 LCUM + 0,00

Beoordeling aanvaardbaarheid

[Regeling vervallen per 01-01-2024]

Om een eerste indruk te krijgen van de aanvaardbaarheid van de totale geluidssituatie kan een op de hierboven beschreven wijze gecumuleerde belasting worden vergeleken met de voor die bronsoort van toepassing zijnde normering. Daarbij moet echter worden bedacht dat de normen zijn gesteld voor toetsing van een bron afzonderlijk, zodat letterlijke toepassing van de normen bij de beoordeling van cumulatie niet aan de orde is. Wanneer het onderzoek plaatsvindt op grond van de Wet geluidhinder en de bronsoort wegverkeer betreft, moet bovendien worden bedacht dat in de bijdrage(n) van de wegverkeersbron(nen) aan het cumulatieve niveau geen rekening is gehouden met de aftrek op grond van artikel 110g van de Wet geluidhinder. In het geval van een onderzoek aan een wegverkeersbron op grond van de Wet geluidhinder ligt vergelijking met de normering voor wegverkeer in de Wet geluidhinder, die betrekking heeft op de geluidsbelasting waarop wel de aftrek is toegepast, daarom minder voor de hand.

Bij de beoordeling van de aanvaardbaarheid van het cumulatieve niveau is het daarnaast goed om aandacht te schenken aan het aantal geluidsgevoelige bestemmingen dat met een hoge cumulatieve geluidsbelasting wordt geconfronteerd, de vraag of één dan wel meer gevels hoogbelast zijn (al dan niet door verschillende bronnen), en de mogelijkheid om de cumulatieve geluidsbelasting te verlagen door de geluidsbelasting vanwege de bron waarvoor het onderzoek is ingesteld (verder) te verlagen. Wanneer het onderzoek plaatsvindt op grond van de Wet milieubeheer kan het daarnaast gewenst zijn om met de beheerder(s) van de andere bron(nen) te overleggen over de mogelijkheid om de cumulatieve geluidsbelasting te verlagen.

Bijlage II. behorende bij hoofdstuk 2 van het Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024]

De aftrek, bedoeld in artikel 2.3, tweede lid, geldt voor het industrieterrein in het geheel. De aftrek is van toepassing op de geluidsbelasting vanwege een industrieterrein; de waarde hiervan is per definitie in hele waarden afgerond. Voor de bepaling van de toe te passen aftrek voor een industrieterrein wordt eerst bepaald wat volgens onderstaande tabel de maximale aftrek is op de beoordelingspunten. De beoordelingspunten liggen bij in de zone aanwezige geluidsgevoelige bestemmingen, te weten woningen, geluidsgevoelige gebouwen en geluidsgevoelige terreinen. Bevinden zich geen geluidsgevoelige bestemmingen in de zone, dan liggen de beoordelingspunten op de zonegrens. De waarde van de aftrek is afhankelijk van de bepalende bedrijven op de relevante delen van het industrieterrein en kan derhalve per beoordelingspunt verschillen. Het beoordelingspunt met de laagste aftrek is maatgevend voor het hele industrieterrein.

Industrieterrein waarbij de geluidsbelasting op één of meer beoordelingspunten wordt bepaald1 door

Maximale aftrek in dB in het geval de geluidsbelasting op één of meer beoordelingspunten wordt bepaald2 door

bedrijven met een jaargemiddeld continue geluidsuitstraling

zowel bedrijven met een jaargemiddeld continue geluidsuitstraling als bedrijven met een jaargemiddeld niet continue geluidsuitstraling

bedrijven met een jaargemiddeld niet continue geluidsuitstraling

1 bedrijf (solitaire inrichting)

0

n.v.t.

2

Meer dan 1 maar minder dan 10 bedrijven

0

1

2

10 of meer bedrijven

1

2

3

1 Bepalend zijn de bedrijven, met de grootste bijdragen aan de geluidsbelasting, die gezamenlijk een geluidsbelasting veroorzaken ter grootte van de geluidsbelasting vanwege het industrieterrein als geheel verminderd met 1 dB.

2 Bedrijven hebben een ‘jaargemiddeld continue geluidsuitstraling’ als de geluidsuitstraling jaargemiddeld gezien niet meer dan 2 dB lager is dan de geluidsuitstraling in de representatieve bedrijfssituatie.

Toelichting bij de tabel

[Regeling vervallen per 01-01-2024]

Bepalend voor de waarde die het effect van de redelijke sommatie kan aannemen is het aantal bedrijven dat bepalend is voor de geluidsbelasting op de beoordelingspunten en de continuïteit van de geluidsuitstraling van die bepalende bedrijven.

Voor het begrip ‘bepalend’ is een concreet criterium gegeven. Bepalend zijn die bedrijven die de grootste deelbijdragen leveren op het betreffende beoordelingspunt. De overige bedrijven zijn niet bepalend voor het vaststellen van het effect van de redelijke sommatie.

Ook voor het karakter van de geluidsuitstraling is een concreet criterium gegeven. De continuïteit van de geluidsuitstraling wordt bepaald door het verschil tussen de geluidsuitstraling in de representatieve bedrijfssituatie en de gemiddelde geluidsuitstraling beoordeeld over de periode van één jaar.

Als in de zone meerdere van de in tabel genoemde situaties optreden, geldt de laagste waarde als maximale aftrek voor de gehele zone. Als zich in de zone bijvoorbeeld woningen bevinden die bepalend worden belast door minder dan 10 bedrijven met een jaargemiddeld echt continue geluidsuitstraling, dan is de maximale aftrek voor de gehele zone altijd gelijk aan 0 dB. De betreffende woningen kunnen dan geen hogere geluidsbelasting gaan ondervinden dan de voor die woningen vastgestelde grenswaarden.

Bijlage III. behorende bij hoofdstuk 3 van het Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024]

Inhoud

[Regeling vervallen per 01-01-2024]

  • 1. STANDAARDREKENMETHODE 1

    • 1.1 Begrippen

    • 1.2 Geometrische definiëring situatie

    • 1.3 Toepassingsbereik methode

    • 1.4 Rekenmodel

    • 1.5 Emissiegetal

    • 1.6 Optrekcorrectie Coptrek

    • 1.7 Reflectieterm

    • 1.8 Afstandsterm

    • 1.9 Luchtdemping, bodemeffect, meteo-effect

  • 2. STANDAARDREKENMETHODE 2

    • 2.1 Begrippen

    • 2.2 De hoofdformule

    • 2.3 Reflecties

    • 2.4 De emissieterm LE

    • 2.5 Optrektoeslag ΔLOP

    • 2.6 De geometrische uitbreidingsterm ΔLGU

    • 2.7 De luchtdemping ΔLL

    • 2.8 De bodemdemping ΔLB

    • 2.9 De meteocorrectieterm CM

    • 2.10 De schermwerking ΔLSW

    • 2.11 De niveaureductie ΔLR ten gevolge van absorptie bij reflecties

    • 2.12 Het octaafbandspectrum van het equivalente geluidsniveau

  • 3. STANDAARDMEETMETHODE

    • 3.1 De meetmethode voor de bepaling van het LAeq

    • 3.2 Apparatuur

    • 3.3 Meteorologische randvoorwaarden

    • 3.4 De meetplaats

    • 3.5 De meetprocedure

  • 4. WEGDEKCORRECTIE

    • 4.1 Metingen

    • 4.2 Bepalen van het gemiddelde geluidniveau per voertuigcategorie en per meetlocatie

    • 4.3 Bepalen van de initiële wegdekcorrectie uit middeling over verschillende locaties

    • 4.4 Bepalen van de verouderingscorrectie (Ctijd)

    • 4.5 Bepalen van de wegdekcorrectie uit de initiële wegdekcorrectie en Ctijd

  • 5. REKENREGEL SCHERMTOP

    • 5.1 Definitie

    • 5.2 Rekenregel

  • 6. REKENREGEL MIDDENBERMSCHERM

    • 6.1 Definitie

    • 6.2 Rekenregel

  • 7. REKEN- EN MEETREGEL DIFFRACTOR

    • 7.1 Definitie

    • 7.2 Rekenregel

    • 7.2A Rekenregel CS,diff

    • 7.3 Meettechnische bepaling producteigenschappen van een ingegraven diffractor

    • 7.4 Meettechnische bepaling producteigenschappen van een diffractor op een scherm

  • 8. TOELICHTING

    • 8.1 Begrippen

    • 8.2 Standaardrekenmethode 1

    • 8.3 Standaardrekenmethode 2

    • 8.4 Standaadmeetmethode

    • 8.5 Methode bepaling wegdekcorrectie

    • 8.6 Rekenregel middenbermscherm

    • 8.7 Rekenregel diffractor

    • 8.8 Lijst met definities

1. Standaardrekenmethode 1

[Regeling vervallen per 01-01-2024]

1.1. Begrippen

[Regeling vervallen per 01-01-2024]

  • 1. In dit hoofdstuk wordt verstaan onder:

    • afstand tot rijlijn: kleinste afstand tussen het waarneempunt en een rijlijn (symbool r);

    • begrenzingslijnen: begrenzingen van de voor de geluidsimmissie meest bepalende omgeving van het waarneempunt (zie Figuur 1.1);

    • etmaalperiode: gedeelte van een etmaal waarover het equivalent geluidsniveau wordt bepaald;

    • hoogte van de waarnemer: hoogte van de waarnemer ten opzichte van het maaiveld (symbool hw);

    • hoogte van het wegdek: hoogte van het wegdek ten opzichte van het maaiveld (symbool hweg);

    • horizontale afstand tot rijlijn: kortste horizontale afstand tussen een (waarneem)punt en een rijlijn (symbool d, eventueel met indices);

    • maatgevende verkeersintensiteit: verkeersintensiteit, zoals die, in het voor de geluidsbelasting bepalende jaar, gemiddeld over een representatief tijdvak, optreedt;

    • rijlijn: lijn in het midden van een rijstrook op 0,75 m boven wegdekhoogte, die de plaats van de geluidsafstraling van de motorvoertuigen representeert;

    • verkeersintensiteit: aantal motorvoertuigen van een categorie motorvoertuigen als bedoeld in het tweede lid, dat jaarlijks per uur, gemiddeld over een etmaalperiode, passeert;

    • verkeerssnelheid: voor het betreffende wegvak representatief te achten gemiddelde snelheid per categorie motorvoertuigen als bedoeld in het tweede lid;

    • waarneempunt: punt waarvoor het equivalente geluidsniveau in dB(A), het LAeq, bepaald moet worden; als deze bepaling dient ter vaststelling van de geluidsbelasting van een gevel dan ligt dit punt in het betreffende gevelvlak.

  • 2. Voor de toepassing van dit hoofdstuk worden de volgende categorieën motorvoertuigen onderscheiden:

    • a. categorie lv (lichte motorvoertuigen): motorvoertuigen op drie of meer wielen, met uitzondering van de in categorie mv en categorie zv bedoelde motorvoertuigen;

    • b. categorie mv (middelzware motorvoertuigen): gelede en ongelede autobussen, alsmede andere motorvoertuigen die ongeleed zijn en voorzien van een enkele achteras waarop vier banden zijn gemonteerd;

    • c. categorie zv (zware motorvoertuigen): gelede motorvoertuigen, alsmede motorvoertuigen die zijn voorzien van een dubbele achteras, met uitzondering van autobussen.

  • 3. Als gebruik wordt gemaakt van automatische telapparatuur met een van het tweede lid afwijkende categorie-indeling, zijn deze tellingen toepasbaar als van deze automatische telapparatuur is aangetoond dat het berekende, op tienden van decibellen afgeronde equivalent geluidsniveau niet meer dan 0,5 dB afwijkt bij voor de betreffende wegtype representatieve verkeerssamenstelling.

1.2. Geometrische definiëring situatie

[Regeling vervallen per 01-01-2024]

Ten behoeve van de berekening wordt de geometrische situatie als volgt geschematiseerd.

Bijlage 250228.png
Figuur 1.1 Horizontale projectie van het aandachtsgebied dat ten behoeve van de toetsing aan de toepassingsvoorwaarden wordt gedefinieerd. De onderbroken lijnen I1 en I2 vormen de begrenzinglijnen van het aandachtsgebied.

Vanuit de waarnemer W wordt de kortste verbindingslijn naar de as van de weg getrokken (de lengte van WS is d). Op afstanden 2d vanuit W liggen evenwijdig aan WS de begrenzinglijnen l1 en l2. De lijn door S loodrecht op WS, representeert de as van de denkbeeldige weg (die het model is van de werkelijke weg).

1.3. Toepassingsbereik methode

[Regeling vervallen per 01-01-2024]

De Standaardrekenmethode 1 is gebaseerd op een vereenvoudiging van de situatie, waardoor ten aanzien van het toepassingsbereik van de methode de volgende voorwaarden gelden voor het aandachtsgebied tussen de begrenzinglijnen l1 en l2:

  • a. de as van de werkelijke weg doorsnijdt de in Figuur 1.1 aangegeven gerasterde gebieden niet;

  • b. de weg bevat geen hoogteverschillen van meer dan drie meter ten opzichte van de gemiddelde weghoogte;

  • c. het zicht vanuit de waarnemer op de weg wordt niet belemmerd over een hoek van meer dan 30°;

  • d. het wegdek is van hetzelfde type;

  • e. de verkeersvariabelen vertonen geen belangrijke variaties.

1.4. Rekenmodel

[Regeling vervallen per 01-01-2024]

Het equivalente geluidsniveau LAeq in dB(A) vanwege het wegverkeer wordt gevonden uit:

Bijlage 250229.png

met:

E: emissiegetal (maat voor de bronsterkte en afhankelijk van maatgevende verkeersintensiteiten, snelheden en wegdektype);

Coptrek: correctieterm in verband met eventuele met verkeerslichten geregelde kruisingen van wegen, of in verband met obstakels in de weg die de gemiddelde snelheid sterk verlagen;

Creflectie: correctieterm in verband met eventuele reflecties tegen bebouwing of andere verticale vlakken;

Dafstand: term die de verzwakking als gevolg van de afstand in rekening brengt;

Dlucht: term die de verzwakking als gevolg van luchtdemping in rekening brengt;

Dbodem: term die de verzwakking als gevolg van het bodemeffect in rekening brengt;

Dmeteo: term die het verschil tussen de meteorologisch gemiddelde geluidsoverdracht en de als referentie genomen meewind situatie in rekening brengt.

De uitkomst van formule 1.1 heeft slechts betrekking op één rijlijn. Bij wegen die bestaan uit twee of meer rijstroken worden de afzonderlijke rijlijnen samengevoegd tot representatieve rijlijnen waarop alle verkeer van de samen te voegen rijlijnen is geconcentreerd. De samen te voegen rijlijnen voldoen aan de volgende voorwaarden:

  • de afstand tussen de buitenste samen te voegen rijlijnen is kleiner dan 0,7 maal de afstand tussen de representatieve rijlijn en het waarneempunt;

  • de weg is duidelijk niet asymmetrisch ten opzichte van de representatieve rijlijn, zowel qua verkeerstoestand als qua weginrichting.

In gevallen waarin de weg niet over de volle breedte kan worden vervangen door één representatieve rijlijn wordt het totale LAeq vanwege de weg verkregen door energetische sommatie van de uitkomsten van de berekeningen voor alle rijlijnen:

Bijlage 250230.png

met:

LAeq,i: LAeq vanwege de i-de rijlijn;

N: het aantal rijlijnen.

1.5. Emissiegetal

[Regeling vervallen per 01-01-2024]

Voor elke rijlijn volgt het emissiegetal E uit de energetische sommatie van de emissiegetallen per motorvoertuigcategorie:

Bijlage 250231.png

met:

Elv, Emv en Ezv de emissiegetallen van respectievelijk de lichte (index lv), middelzware (index mv) en de zware (index zv) motorvoertuigen.

Als andere categorieën dan de hiervoor genoemde categorieën akoestische relevant zijn, dan kan de sommatie worden uitgebreid met de emissiegetallen voor die categorieën.

Bij de berekening van de onderscheiden emissiegetallen wordt rekening gehouden met het geluidsvermogen van de motorvoertuigen, met de maatgevende verkeersintensiteit, verkeerssnelheid en referentiesnelheid (respectievelijk Q in aantallen/h, v in km/h en v0 in km/h) per rijlijn tussen de begrenzinglijnen en met een wegdekcorrectie, volgens de wijze aangegeven met de formules 1.4 tot en met 1.6. De referentiesnelheid v0 is voor lichte motorvoertuigen 80 km/h en voor middelzware en zware motorvoertuigen 70 km/h.

Bijlage 250232.png
Bijlage 250233.png
Bijlage 250234.png

Indien het in rekening brengen van bromfietsen, motorfietsen of trams noodzakelijk wordt geacht, dienen de emissiegetallen voor de betreffende extra voertuigcategorie of voertuigcategorieën aan formule 1.3 te worden toegevoegd. De emissiegetallen voor die categorieën worden berekend met de volgende emissievergelijkingen:

voor bromfietsen:

Bijlage 250235.png

voor motorfietsen:

Bijlage 250236.png

voor trams op een rail op dwarsliggers in ballastbed, of op stangenspoor:

Bijlage 250237.png

voor trams op een in (asfalt)beton aangebrachte rail:

Bijlage 250238.png

De wegdekcorrectie is het verschil tussen het emissiegetal (dat gebaseerd is op motorvoertuigen op een dicht asfaltbeton) en het emissiegetal bepaald voor het afwijkende wegdektype. De wegdekcorrectie is in het algemeen afhankelijk van de verkeerssamenstelling en de snelheid en wordt beschreven met de volgende relatie:

Bijlage 250239.png

met:

m: de voertuigcategorie;

v0: 80 km/h voor lichte motorvoertuigen (lv) en 70 km/h voor middelzware en zware motorvoertuigen (mv en zv);

σm: verschil in dB(A) bij de referentiesnelheid v0;

τm: snelheidsindex in dB(A) per decade snelheidstoename.

De coëfficiënten σm en τm dienen bepaald te worden volgens de in hoofdstuk 4 opgenomen methode.

1.6. Optrekcorrectie Coptrek

[Regeling vervallen per 01-01-2024]

De optrekcorrectie Coptrek is een correctieterm ten gevolge van het afremmen en optrekken van het verkeer door de aanwezigheid van een kruispunt of een situatie die de gemiddelde snelheid van het verkeer sterk beperkt. De correctieterm geeft een toeslag weer ten opzichte van verkeer dat rijdt met een constante snelheid van 50 km/h. De optrekcorrectie is het maximum van twee correctietermen, volgens:

Bijlage 250240.png

met:

Ckruispunt: de correctie vanwege een kruispunt;

Cobstakel: de correctie vanwege een situatie die de gemiddelde snelheid sterk beperkt.

1.6.1. Kruispuntcorrectie Ckruispunt

[Regeling vervallen per 01-01-2024]

De kruispuntcorrectie Ckruispunt wordt bij met verkeerslichten geregelde kruisingen van wegen toegepast tot 150 meter van het kruispunt als de verkeersintensiteit op de kruisende weg (ten opzichte van de beschouwde weg) groter is dan 1/5 van de verkeersintensiteit op de beschouwde weg en minimaal 500 motorvoertuigen per etmaal bedraagt. Deze correctie, die voor elke rijlijn apart wordt bepaald, wordt op de volgende manier berekend:

Bijlage 250241.png

met:

p: de som van het percentage middelzware- en zware motorvoertuigen [%];

a: de afstand van het waarneempunt tot het midden van het kruispunt [m].

Indien meerdere kruisingen in rekening zouden kunnen worden gebracht, wordt alleen de meest dichtstbijzijnde kruising beschouwd.

1.6.2. Obstakelcorrectie Cobstakel

[Regeling vervallen per 01-01-2024]

De correctie voor de aanwezigheid van een situatie die de snelheid sterk beperkt Cobstakel wordt toegepast tot 100 meter van de oorzaak van de snelheidsbeperking. Deze correctie wordt toegepast als ten gevolge van de obstakel de gemiddelde snelheid van het verkeer ten minste wordt gehalveerd en het verkeer ten gevolge van de obstakel afremt en weer optrekt. De correctie, die voor elke rijlijn apart wordt bepaald, wordt op de volgende manier berekend:

Bijlage 250242.png

met:

p: de som van het percentage middelzware- en zware motorvoertuigen [%];

a: de afstand van het waarneempunt tot het midden van het obstakel [m].

Indien meerdere obstakels die de snelheid sterk verlagen in rekening zouden kunnen worden gebracht, wordt alleen het meest dichtstbijzijnde obstakel beschouwd.

1.7. Reflectieterm

[Regeling vervallen per 01-01-2024]

De reflectieterm Creflectie wordt in rekening gebracht voor vlakken die zich ten opzichte van het waarneempunt aan de overzijde van de weg bevinden, als voor deze vlakken geldt dat:

  • a. deze akoestisch hard en vlak zijn;

  • b. deze verticaal en ongeveer evenwijdig aan de weg staan;

  • c. deze hoger zijn dan de hoogte van de waarnemer hw;

  • d. de horizontale afstand dr daarvan tot de dichtst bij het waarneempunt gelegen rijlijn kleiner is dan 100 meter en tevens kleiner dan viermaal de horizontale afstand dw van het waarneempunt tot de meest nabij gelegen rijlijn.

Creflectie is gelijk aan anderhalf maal de objectfractie fobj, waaronder wordt verstaan het deel van de afstand 4(dr + dw) aan de overzijde van de weg, symmetrisch ten opzichte van het waarneempunt, waarover de geluidsreflecterende vlakken zich uitstrekken. De reflectieterm heeft voor elke rijlijn van de weg dezelfde waarde.

1.8. Afstandsterm

[Regeling vervallen per 01-01-2024]

De afstandsterm Dafstand wordt berekend volgens:

Bijlage 250243.png

met:

r de kortste afstand tussen het waarneempunt en de betreffende rijlijn [m].

Als de berekening wordt uitgevoerd voor een representatieve rijlijn wordt r gerekend tot deze rijlijn.

1.9. Luchtdemping, bodemeffect, meteo-effect

[Regeling vervallen per 01-01-2024]

Deze termen worden op de hierna volgende wijze berekend:

Bijlage 250244.png

met r de kleinste afstand tussen waarneempunt en rijlijn [m]

Bijlage 250245.png

met B de bodemfactor, gedefinieerd als het deel van het bodemvlak, begrensd door de wegas en de denkbeeldige lijnen vanuit het waarneempunt naar de snijpunten van de begrenzinglijnen met de wegas, dat niet reflecterend is.

Bijlage 250246.png

2. Standaardrekenmethode 2

[Regeling vervallen per 01-01-2024]

2.1. Begrippen

[Regeling vervallen per 01-01-2024]

  • 1. In dit hoofdstuk wordt verstaan onder:

    • bronpunt: snijpunt van een sectorvlak met een rijlijnsegment;

    • etmaalperiode: gedeelte van een etmaal waarover het equivalent geluidsniveau wordt bepaald;

    • openingshoek van een sector: hoek tussen de begrenzingvlakken van een sector in het horizontale vlak;

    • rijlijn: lijn in het midden van een rijstrook, op 0,75 m boven wegdekhoogte, die de plaats van de geluidsafstraling representeert;

    • rijlijnsegment: rechte verbindingslijn tussen de snijpunten van een rijlijn met de grensvlakken van een sector;

    • sector: ruimte begrensd door twee verticale halfvlakken waarvan de grenslijnen samenvallen met de verticaal door het waarneempunt;

    • sectorvlak: bissectricevlak van de twee grensvlakken van een sector;

    • totale openingshoek: som van de openingshoeken van alle sectoren die voor het bepalen van het equivalente geluidsniveau in dB(A) van belang zijn;

    • verkeersintensiteit: aantal motorvoertuigen van een categorie motorvoertuigen als bedoeld in het tweede lid, dat jaarlijks per uur, gemiddeld over een etmaalperiode, passeert;

    • verkeerssnelheid: voor het betreffende wegvak representatief te achten gemiddelde snelheid per categorie motorvoertuigen als bedoeld in het tweede lid;

    • waarneempunt: punt waarvoor het equivalente geluidsniveau in dB(A), het LAeq, bepaald moet worden; als deze bepaling dient ter vaststelling van de geluidsbelasting van een gevel, dan ligt dit punt in het betreffende gevelvlak;

    • zichthoek: hoek waaronder een object (gevel, scherm, weggedeelte, etc.) in horizontale projectie wordt gezien vanuit het waarneempunt.

  • 2. Voor de toepassing van dit hoofdstuk worden de volgende categorieën motorvoertuigen onderscheiden:

    • a. categorie lv (lichte motorvoertuigen): motorvoertuigen op drie of meer wielen, met uitzondering van de in categorie mv en categorie zv bedoelde motorvoertuigen;

    • b. categorie mv (middelzware motorvoertuigen): gelede en ongelede autobussen, alsmede andere motorvoertuigen die ongeleed zijn en voorzien van een enkele achteras waarop vier banden zijn gemonteerd;

    • c. categorie zv (zware motorvoertuigen): gelede motorvoertuigen, alsmede motorvoertuigen die zijn voorzien van een dubbele achteras, met uitzondering van autobussen.

  • 3. Als gebruik wordt gemaakt van automatische telapparatuur met een van het tweede lid afwijkende categorie-indeling, zijn deze tellingen toepasbaar als van deze automatische telapparatuur is aangetoond dat het berekende, op tienden van decibellen afgeronde equivalent geluidsniveau niet meer dan 0,5 dB afwijkt bij voor de betreffende wegtype representatieve verkeerssamenstelling.

    Bijlage 250247.png
    Figuur 2.1 Illustratie bij de begripsbepalingen.
    Bijlage 250248.png
    Figuur 2.2 Illustratie bij het begrip rijlijnsegment.

2.2. De hoofdformule

[Regeling vervallen per 01-01-2024]

Het equivalente geluidsniveau in dB(A), het LAeq, wordt als volgt berekend:

Bijlage 250249.png

waarbij Leq,i,j,n,m de bijdrage is aan het LAeq in één octaaf (index i), van één sector (index j), van één bronpunt (index n) en van één voertuigcategorie (index m).

Leq,i,j,n,m wordt berekend volgens:

Bijlage 250250.png

met:

LE: de emissieterm

§ 2.4

ΔLOP: de optrektoeslag1

§ 2.5

ΔLGU: de geometrische uitbreidingsterm

§ 2.6

ΔLL: de luchtdemping

§ 2.7

ΔLB: de bodemdemping

§ 2.8

CM: de meteocorrectieterm

§ 2.9

ΔLSW: de schermwerking1

§ 2.10

ΔLR: de niveaureductie ten gevolge van reflecties1

§ 2.11

1Indien van toepassing.

Er wordt gesommeerd over de octaafbanden met indices i = 1 tot en met i = 8 en middenfrequenties respectievelijk 63, 125, 250, 500, 1000, 2000, 4000 en 8000 Hz.

De sectorindeling is zodanig dat de geometrie en de verkeerssituatie in een sector goed worden beschreven met de geometrie en de verkeerssituatie in het sectorvlak. Hierbij kan worden uitgegaan van een vaste of een variabele openingshoek. De openingshoek bij vaste sectorhoeken is 2°, bij het gebruik van variabele sectorhoeken is de maximale openingshoek 5°. De minimale sectorhoek bedraagt daarvoor 0,5°.

Het aantal bronpunten N binnen één sector wordt bepaald door het aantal keer dat het betreffende sectorvlak een rijlijn (segment) snijdt.

De sommatie aangegeven met de index m vindt plaats over de drie in artikel 1.1, eerste lid, van deze regeling onderscheiden voertuigcategorieën, te weten: lichte (m = lv), middelzware (m = mv) en zware (m = zv) motorvoertuigen. Als andere categorieën dan de hiervoor genoemde categorieën akoestische relevant zijn, dan kan de sommatie worden uitgebreid met deze categorieën.

2.3. Reflecties

[Regeling vervallen per 01-01-2024]

Indien zich binnen een sector objecten met een verticaal, hard oppervlak bevinden, die voldoen aan de hieronder gestelde voorwaarden, dan wordt het LAeq mede bepaald door het geluid dat via reflecties het waarneempunt bereikt. De bijdrage van deze reflecties aan het LAeq wordt in rekening gebracht door het sectordeel dat zich, gezien vanuit het waarneempunt, achter dat reflecterend oppervlak bevindt, te vervangen door zijn spiegelbeeld ten opzichte van het reflecterend oppervlak.

Om als reflecterend oppervlak te worden aangemerkt:

  • heeft het vlak een zichthoek van 2° of meer;

  • steekt het vlak over de gehele sectorhoek ten minste twee meter boven het wegdek uit.

Nader onderzoek naar de invloed van reflecties op het LAeq is vereist indien:

  • het reflecterend oppervlak een grotere hoek met de verticaal maakt dan 5 graden;

  • het reflecterend oppervlak oneffenheden bevat waarvan de afmetingen van dezelfde orde van grootte zijn als de afstand van het vlak tot het waarneempunt of de afstand van het vlak tot het bronpunt;

  • het reflecterend object een geluidsafschermende voorziening is die aan de wegzijde is voorzien van een absorberend oppervlak;

  • het reflecterend object een geluidsafschermende voorziening is en zich aan de overzijde van de weg eveneens een geluidsafschermende voorziening bevindt.

Bij de berekeningen wordt standaard uitgegaan van één reflectie. In geval van berekeningen met meervoudige reflecties wordt de spiegeling herhaald toegepast.

2.4. De emissieterm LE

[Regeling vervallen per 01-01-2024]

Bij de bepaling van de emissieterm LE wordt gebruik gemaakt van de indeling in voertuigcategorieën als bedoeld in artikel 2.1 van deze bijlage. Voor de berekening van LE zijn de volgende gegevens nodig:

Q: de gemiddelde intensiteit van de betreffende voertuigcategorie [h-1];

vm: de gemiddelde snelheid van de betreffende voertuigcategorie [km/h];

v0: de referentiesnelheid van de betreffende voertuigcategorie, deze bedraagt voor lv 80 km/h en voor mv en zv 70 km/h [km/h];

Cwegdek: de wegdekcorrectie [dB(A)];

CH: de hellingcorrectie [dB(A)].

De berekening verloopt als volgt:

Bijlage 250251.png

waarin

Bijlage 250252.png

het A-gewogen equivalente bronvermogensniveau van de betreffende voertuigcategorie is en Cwegdek de emissiecorrectie voor verschillende wegdektypen.

2.4.1. Het A-gewogen equivalente bronvermogensniveau.

[Regeling vervallen per 01-01-2024]

De waarden van emissiekentallen α en β zijn gegeven in de Tabel 2.1 en Tabel 2.2 als functie van de octaafband i en de voertuigcategorie m. De getallen gelden voor horizontale weggedeelten met een wegverharding van dicht asfaltbeton.

Tabel 2.1 Emissiekental α als functie van voertuigcategorie m en octaafband i

Octaafbandindex (i)

α

m = lv

m = mv

m = zv

1

72,1

79,9

84,1

2

81,7

91,1

91,4

3

86,8

97,1

97,7

4

94,5

100,5

104,8

5

103,0

103,3

106,5

6

99,2

100,4

102,4

7

92,3

93,9

95,6

8

80,9

85,6

87,0

Tabel 2.2 Emissiekental β als functie van voertuigcategorie m en octaafband i

Octaafbandindex (i)

β

m = lv

m = mv

m = zv

1

10,0

–0,2

9,8

2

25,5

+16,6

11,4

3

27,7

2,5

2,6

4

24,3

26,6

23,2

5

30,9

22,3

20,8

6

29,7

16,6

15,0

7

29,3

+16,2

+12,4

8

26,9

–1,9

–3,1

Indien het in rekening brengen van motorfietsen, bromfietsen of trams noodzakelijk wordt geacht, kan dit gebeuren door het introduceren van extra voertuigcategorieën in de formule 2.1. De emissiekentallen α en β voor motorfietsen, bromfietsen en trams zijn gegeven in tabel 2.2a en kunnen gebruikt worden in formule 2.3. De referentiesnelheid v0 is voor motorfietsen 80 km/h, voor de overige categorieën is de (fictieve) referentiesnelheid 1 km/h.

Voor trams is een keuze mogelijk uit twee bovenbouwconstructies, namelijk:

  • 1. rail op dwarsliggers in ballastbed of stangenspoor;

  • 2. rail in (asfalt)beton.

Tabel 2.2a Emissiekental α en β voor motorfietsen, bromfietsen en trams als functie van octaafband i

Octaafband i

motorfietsen

bromfietsen

trams op ballastbed

trams in (asfalt)beton

α

β

α

β

α

β

α

β

1

2

3

4

5

6

7

8

82

90

97

99

96

96

93

87

29

29

29

29

29

29

29

29

60

75

86

93

97

96

94

91

0

0

0

0

0

0

0

0

29

39

46

53

55

54

48

36

30

30

30

30

30

30

30

30

32

47

54

59

61

58

50

38

30

30

30

30

30

30

30

30

2.4.2. De wegdekcorrectie Cwegdek

[Regeling vervallen per 01-01-2024]

Voor een wegdektype dat afwijkt van dicht asfaltbeton wordt een correctie op het A-gewogen equivalente bronvermogen in rekening gebracht. De wegdekcorrectie Cwegdek is het verschil tussen het emissiegetal dat is gebaseerd op dicht asfaltbeton en het emissiegetal bepaald voor het afwijkende wegdektype. De wegdekcorrectie is in het algemeen afhankelijk van de verkeerssamenstelling en de referentiesnelheid en wordt beschreven met de volgende relatie:

Bijlage 250253.png

met:

v0: is de referentiesnelheid in km/h: 80 km/h voor lichte motorvoertuigen (m = lv) en 70 km/h voor middelzware en zware motorvoertuigen (m = mv, resp. m = zv);

σm,i: verschil in dB(A) bij de referentiesnelheid v0;

τm: snelheidsindex in dB(A) per decade snelheidstoename.

De coëfficiënten σm,i en τm dienen bepaald te worden volgens de in hoofdstuk 4 opgenomen methode.

2.4.3. De hellingcorrectie CH

[Regeling vervallen per 01-01-2024]

Indien het stijgend gedeelte van het verkeer een helling van ten minste 3% moet overwinnen over een hoogteverschil van ten minste 6 meter, dan wordt de volgende hellingcorrectie CH in rekening gebracht:

Tabel 2.3 De hellingcorrectie CH voor de verschillende voertuigcategorieën

m

CH

lv

Bijlage 250254.png

mv

Bijlage 250255.png

zv

waarin:

ph het hellingspercentage van het betreffende wegvak is.

2.5. Optrektoeslag ΔLOP

[Regeling vervallen per 01-01-2024]

De optrekcorrectie ΔLOP is een correctieterm ten gevolge van het afremmen en optrekken van het verkeer door de aanwezigheid van een kruispunt of een situatie die de gemiddelde snelheid van het verkeer sterk beperkt. De optrekcorrectie ten gevolge van deze snelheidsbeperkende maatregelen mag alleen toegepast worden als ten gevolge van die obstakels de gemiddelde snelheid van de voertuigen ten minste wordt gehalveerd. De correctieterm geeft een toeslag weer ten opzichte van verkeer dat rijdt met een constante snelheid van 50 km/h. De optrekcorrectie is het maximum van twee correctietermen, volgens:

Bijlage 250256.png

met:

ΔLkruispunt,m: de toeslag vanwege een kruispunt;

ΔLobstakel,m: de toeslag vanwege een situatie die de gemiddelde snelheid sterk beperkt.

Bij ‘modelleringsnelheden’ die afwijken van 50 km/h moet nader onderzoek plaatsvinden naar de hoogte van de optrekcorrectie.

2.5.1. De kruispunttoeslag ΔLkruispunt

[Regeling vervallen per 01-01-2024]

Bij de berekening van de kruispunttoeslag ΔLkruispunt wordt onderscheid gemaakt naar verschillende typen kruispunt.

Het type van een kruispunt wordt bepaald met behulp van de volgende drie criteria:

  • 1. de orde van het kruispunt:

    • a. een kruispunt is van de eerste orde als ten minste drie van de op het kruispunt aansluitende weggedeelten een totale intensiteit van 2500 motorvoertuigen per etmaal hebben;

    • b. een kruispunt is van de tweede orde als twee van de op het kruispunt aansluitende weggedeelten een totale intensiteit van 2500 motorvoertuigen per etmaal hebben;

  • 2. de verkeersregeling op het kruispunt. Zijn verkeerslichten afwezig of niet in werking, dan spreekt men van een ongeregeld kruispunt. In alle andere gevallen van een geregeld kruispunt;

  • 3. de intensiteitverhouding van de kruisende verkeersstromen. Als deze verhouding tussen de 1/3 en 3 ligt, is er sprake van een gelijkwaardig kruispunt, in alle andere gevallen van een ongelijkwaardig kruispunt. Een voorrangskruising is in alle gevallen ongelijkwaardig.

Voor de berekening van de kruispunttoeslag ΔLkruispunt zijn de volgende gegevens nodig:

a: de afstand van het waarneempunt tot het snijpunt van de betreffende rijlijn met het verlengde van de dichtstbijzijnde wegrand van het kruisende weggedeelte [m];

q: het type kruispunt (dat wil zeggen de orde, de verkeersregeling en de intensiteitverhouding).

Bij ongeregelde kruispunten wordt geen kruispunttoeslag in rekening gebracht.

De berekening voor geregelde kruispunten gebeurt op de volgende manier.

Voor lichte motorvoertuigen (lv):

Bijlage 250257.png

Voor middelzware (mv) en zware voertuigen (zv):

Bijlage 250258.png

waarbij q afhankelijk is van het type kruispunt. De waarde van q volgt uit Tabel 2.4.

Voor alle voertuigcategorieën geldt:

Bijlage 250259.png

Ligt het waarneempunt in de invloedssfeer van meerdere kruispunten, dan wordt alleen de hoogste kruispunttoeslag in rekening gebracht.

Tabel 2.4 De kruispuntkentallen q als functie van het type kruispunt

Orde van het kruispunt

Gelijkwaardig kruispunt

Ongelijkwaardig kruispunt

Eerste

1

2/3 (1/21)

Tweede

1 (2/31)

1/22

1In geval van een groene golf.

2 Hierin zijn ook met verkeerslichten beveiligde voetgangersoversteekplaatsen begrepen.

2.5.2. Obstakeltoeslag ΔLobstakel

[Regeling vervallen per 01-01-2024]

De toeslag voor de aanwezigheid van een situatie die de snelheid sterk beperkt ΔLobstakel wordt toegepast tot 100 meter van de oorzaak van de snelheidsbeperking. Deze correctie wordt toegepast als ten gevolge van de obstakel de gemiddelde snelheid van het verkeer ten minste wordt gehalveerd en het verkeer ten gevolge van de obstakel afremt en weer optrekt. Deze toeslag wordt op de volgende manier berekend:

Voor lichte motorvoertuigen (lv):

Bijlage 250260.png

Voor middelzware (mv) en zware voertuigen (zv):

Bijlage 250261.png

met: a = de afstand van het waarneempunt tot het midden van de obstakel [m].

Voor alle voertuigcategorieën geldt:

Bijlage 250262.png

Indien meerdere snelheidsbeperkingen in rekening zouden kunnen worden gebracht, wordt alleen de meest dichtstbijzijnde snelheidsbeperking beschouwd.

2.6. De geometrische uitbreidingsterm ΔLGU

[Regeling vervallen per 01-01-2024]

Voor de berekening van de geometrische uitbreidingsterm zijn de volgende gegevens nodig:

Ro: de afstand tussen bron- en waarneempunt, gemeten langs de kortste verbindingslijn [m].

Θ: de hoek die het sectorvlak maakt met het rijlijnsegment (in graden).

Φ: de openingshoek van de sector (in graden).

De berekening van ΔLGU verloopt als volgt:

Bijlage 250263.png

Als de hoek Θ een waarde aanneemt die kleiner is dan de openingshoek van de betreffende sector is nader onderzoek vereist ter bepaling van de term ΔLGU.

2.7. De luchtdemping ΔLL

[Regeling vervallen per 01-01-2024]

Voor de berekening van ΔLL is het volgende gegeven nodig:

Ro: de afstand tussen bron- en waarneempunt, gemeten langs de kortste verbindingslijn [m].

De berekening verloopt als volgt:

Bijlage 250264.png

waarbij δlucht de luchtdempingscoëfficiënt is. De waarde van δlucht wordt gegeven in Tabel 2.5.

Tabel 2.5 De luchtdempingscoëfficiënt δlucht als functie van de octaafband i

octaafbandindex

δlucht[dB/m]

1

0

2

0

3

0,001

4

0,002

5

0,004

6

0,010

7

0,023

8

0,058

2.8. De bodemdemping ΔLB

[Regeling vervallen per 01-01-2024]

Bij de bepaling van de bodemdemping ΔLB wordt de horizontaal gemeten afstand tussen bron- en waarneempunt (symbool R) verdeeld in drie afzonderlijke delen:

  • een brongebied,

  • een waarneemgebied;

  • en een middengebied.

Bron- en waarneemgebied hebben elk een lengte van 70 meter. Het resterende gedeelte van de afstand R tussen bron- en waarneempunt is het middengebied. Indien de afstand R kleiner is dan 140 meter, dan is de lengte van het middengebied nihil. Indien de afstand R kleiner is dan 70 meter, dan zijn de lengtes van bron- en waarneemgebied beide gelijk aan de afstand R.

Voor elk van de drie gebieden wordt de gemiddelde (bodem)absorptiefractie bepaald. De gemiddelde absorptiefractie in een gebied wordt berekend door middeling van de absorptiefracties van de deelgebieden, waarbij een weging wordt toegepast die is gebaseerd op het quotiënt van de lengte van het deelgebied en de lengte van het totale gebied. Als de lengte van het middengebied nihil is, wordt de gemiddelde absorptiefractie van het middengebied op één gesteld.

Voor akoestisch hard gebied (water, geasfalteerde vlakken en dergelijke) is de absorptiefractie gelijk aan nul. Voor akoestisch zacht gebied zoals grasland, akkerland en bos- en duingrond is de absorptiefractie gelijk aan 1,0. Bij een wegdektype dat significant absorberende eigenschappen heeft (zoals ZOAB en (Fijn) tweelaags ZOAB), wordt een absorptiefractie van 0,5 aangehouden. Een diffractor, niet zijnde een diffractor op scherm, heeft een absorptiefractie van nul.

In de situatie dat het bronpunt boven een wegdek met significant absorberende eigenschappen ligt, zijn de volgende regels van toepassing bij de bepaling van de gemiddelde absorptiefractie van het brongebied:

  • Voor de eerste Y meter vanuit het bronpunt wordt een absorptiefractie gelijk aan nul toegepast. De waarde van Y wordt gegeven door de volgende formule:

Bijlage 250265.png

met:

Θ: de hoek die het sectorvlak maakt met het rijlijnsegment (in graden)

X: 5 m

  • De waarde van Y wordt begrensd door de lengte van het brongebied.

  • Voor het restant van het brongebied worden de absorptiefracties gebruikt die voor het brongebied zijn gemodelleerd.

Voor de berekening van de bodemdemping zijn de volgende gegevens nodig:

R: de horizontaal gemeten afstand tussen bron- en waarneempunt [m]

hb: de hoogte van het bronpunt boven de gemiddelde maaiveldhoogte in het brongebied [m]

hw: de hoogte van het waarneempunt boven de gemiddelde maaiveldhoogte in het waarneemgebied [m]

Bb: de absorptiefractie van het brongebied [–]

Bm: de absorptiefractie van het middengebied [–]

Bw: de absorptiefractie van het waarneemgebied [–]

Sw: effectiviteit van de bodemdemping in het waarneemgebied [–]

Sb: effectiviteit van de bodemdemping in het brongebied [–]

Ter verduidelijking van de definitie van hb en hw is in Figuur 2.3 de ligging van de gemiddelde maaiveldhoogte in het brongebied aangegeven voor een verhoogd aangelegde weg in een willekeurig sectorvlak.

Bijlage 250266.png
Figuur 2.3 De bron- en waarneemhoogte ten opzichte van het gemiddeld plaatselijk maaiveld. Door de verhoogde ligging van de weg ligt het gemiddelde maaiveld in het brongebied iets boven het maaiveld naast het wegtalud.

Als hb en/of hw kleiner is dan nul, wordt voor hb respectievelijk hw de waarde nul aangehouden. Als in de betreffende sector geen afscherming in rekening wordt gebracht, geldt dat Sw en Sb beide de waarde één aannemen. In geval van afscherming worden Sw en Sb berekend volgens formule 2.20 in § 2.10.

De berekening van de bodemdemping verloopt volgens de formules, gegeven in Tabel 2.6.

Tabel 2.6 De formules voor de bepaling van bodemdemping ΔLB als functie van de octaafband i. De cursief gedrukte symbolen vormen de waarden die voor de variabelen x en y moeten worden gesubstitueerd in de functie γ (x, y).

Octaafband i

Bodemdemping ΔLB [dB]

1

 

–3 γo(hb + hw,R)

 

–6

2

[Sbγ1(hb,R) + 1]Bb

–3[1–Bm] γo(hb + hw,R)

+[Swγ1(hw,R)+ 1]Bw

–2

3

[Sbγ2(hb,R) + 1]Bb

–3[1–Bm] γo(hb + hw,R)

+[Swγ2(hw,R)+ 1]Bw

–2

4

[Sbγ3(hb,R) + 1]Bb

–3[1–Bm] γo(hb + hw,R)

+[Swγ3(hw,R)+ 1]Bw

–2

5

[Sbγ4(hb,R) + 1]Bb

–3[1–Bm] γo(hb + hw,R)

+[Swγ4(hw,R)+ 1]Bw

–2

6

Bb

–3[1–Bm] γo(hb + hw,R)

+ Bw

–2

7

Bb

–3[1–Bm] γo(hb + hw,R)

+ Bw

–2

8

Bb

–3[1–Bm] γo(hb + hw,R)

+ Bw

–2

De functie γ worden als volgt gedefinieerd:

Bijlage 250267.png

Voor de variabelen x en y worden de waarden van de grootheden gesubstitueerd die tussen haakjes in cursieven achter de overeenkomstige functies γ uit de formules als gegeven in Tabel 2.6 zijn geplaatst.

2.9. De meteocorrectieterm CM

[Regeling vervallen per 01-01-2024]

Voor de berekening van de meteocorrectieterm CM zijn de volgende gegevens nodig:

R: de horizontaal gemeten afstand tussen bron- en waarneempunt [m];

hb: de hoogte van het bronpunt boven de gemiddelde maaiveldhoogte in het brongebied [m];

hw: de hoogte van het waarneempunt boven de gemiddelde maaiveldhoogte in het waarneemgebied [m].

Als hb en/of hw kleiner is dan nul, wordt voor hb respectievelijk hw de waarde nul aangehouden. De berekening verloopt als volgt:

Bijlage 250268.png

2.10. De schermwerking ΔLSW(incl. de termen Sw en Sb uit de bodemdempingsformules als gegeven in Tabel 2.6).

[Regeling vervallen per 01-01-2024]

Indien zich binnen een sector objecten bevinden waarvan de zichthoek ten minste samenvalt met de openingshoek van de betreffende sector en waarvan tevens in redelijkheid is te verwachten dat die de geluidsoverdracht zullen belemmeren, wordt de schermwerking ΔLSW tezamen met een verminderde bodemdemping (vervat in de termen Sw en Sb, zie Tabel 2.6 van § 2.8) in rekening gebracht.

Voor de bepaling van de totale schermwerking wordt onderscheid gemaakt tussen objecten die voldoen aan de definitie van een middenbermscherm als bedoeld in hoofdstuk 6 en alle andere afschermende objecten.

De totale schermwerking ∆LSW wordt berekend volgens de formule:

Bijlage 263409.png

waarin:

∆LSWN = de schermwerking van een afschermend object, niet zijnde een middenbermscherm;

Cmbs = de middenbermcorrectie;

Cdiff = de correctie voor een diffractoreffect voor een ingegraven diffractor.

De waarde van de correctieterm voor een middenbermscherm Cmbs volgt uit de methode, beschreven in hoofdstuk 6.

De waarde van de correctieterm voor een diffractor Cdiff volgt uit de methode, beschreven in hoofdstuk 7.

De berekeningsformule van de schermwerking ∆LSWN van een willekeurig gevormd object (niet zijnde een middenbermscherm of ingegraven diffractor) bevat vier termen, zie formule 2.18.

  • 1. De eerste term beschrijft de afscherming van een equivalent ideaal scherm (een dun, verticaal vlak). De hoogte van het equivalente scherm is gelijk aan de grootste hoogte van het obstakel. De bovenrand van het equivalente scherm valt samen met de bovenrand van het object. Als op grond hiervan meerdere locaties van het equivalente scherm mogelijk zijn, wordt hieruit die locatie gekozen die maximale schermwerking tot gevolg heeft.

  • 2. De tweede, de derde en de vierde term zijn alleen van belang als het profiel, dat wil zeggen de doorsnede in het sectorvlak, van het afschermend object afwijkt van dat van het ideale scherm.

    • a. Het extra afschermend effect van een diffractor bovenop een geluidscherm wordt in rekening gebracht met een correctieterm CS,diff;

    • b. Het extra afschermende effect van een schermtop – mits deze voldoet aan de in hoofdstuk 5 omschreven eisen – kan in rekening worden gebracht met een correctieterm CT vanwege een schermtop;

    • c. Het effect van alle andere van het ideale scherm afwijkende profielen wordt in rekening gebracht door het toepassen van een profielafhankelijke correctieterm Cp.

Als er meerdere afschermende objecten in een sector aanwezig zijn, wordt alleen het object in rekening gebracht dat, bij afwezigheid van de andere objecten, de grootste afscherming zou geven.

De schermwerking ΔLSWN wordt als volgt berekend:

Bijlage 268959.png

waarin:

H de effectiviteit van het scherm is;

F(Nf) een functie met argument Nf (het fresnelgetal);

CS,diff de correctieterm voor een diffractor als schermtop op een geluidscherm;

CT de correctieterm vanwege een schermtop in de vorm van een T-top;

Cp de profielafhankelijke correctieterm.

Als de schermwerking ΔLSWN op grond van formule 2.18 negatief wordt, wordt de waarde ΔLSW = 0 aangehouden.

Definities

Voor de berekening van de afschermende effecten zijn de volgende gegevens nodig:

zB: de hoogte van de bron ten opzichte van het referentiepeil (= horizontaal vlak waarin z = 0) [m].

z'B: de rekenhoogte ten behoeve van het bepalen van het Fresnelgetal Nf voor de schermwerking van de bron ten opzichte van het referentiepeil [m].

zW: de hoogte van het waarneempunt ten opzichte van het referentiepeil [m].

zT: de hoogte van de top van de afscherming ten opzichte van het referentiepeil [m].

hb: de hoogte van het bronpunt boven de gemiddelde maaiveldhoogte in het brongebied [m].

hw: de hoogte van het waarneempunt boven de gemiddelde maaiveldhoogte in het waarneemgebied [m].

hT: de hoogte van de top van de afscherming ten opzichte van het plaatselijk maaiveld. Het plaatselijk maaiveld bij een scherm is de gemiddelde maaiveldhoogte in een strook ter breedte van 5 m aan beide zijden van het scherm. Indien aan beide zijden van het scherm de maaiveldhoogte verschillend is, wordt de grootste waarde van hT genomen, zie Figuur 2.4 [m].

Ro: de afstand tussen bron- en waarneempunt gemeten langs de kortste verbindingslijn [m].

Rw: de horizontaal gemeten afstand tussen waarneempunt en scherm [m].

R: de horizontaal gemeten afstand tussen waarneem- en bronpunt [m].

–: het profiel van het afschermend object.

De rekenhoogte z'B wordt gegeven door:

z'B = zB – ΔzB

met

ΔzB = 0,65

als 0,75 (zB – zT + 0,25) ≤ 0

2.18a.

ΔzB = 0,4625 – 0,75 (zB – zT)

als 0 < 0,75 (zB – zT + 0,25) < 0,65

ΔzB = 0

als 0,75 (zB – zT + 0,25) ≥ 0,65

Bijlage 250271.png
Figuur 2.4 De schermhoogte hT bij een scherm op een verhoogd wegtalud. In dit voorbeeld is de situatie rechts bepalend voor hT.
Bijlage 271182.png

Voor de berekening worden op het scherm een drietal punten gedefinieerd (zie Figuur 2.5).

K: het snijpunt van het scherm met de zichtlijn (= de rechte tussen bron- en waarneempunt)

L: het snijpunt van het scherm met een gekromde geluidsstraal die onder meewindcondities van bron- naar waarneempunt loopt

T: de top van het scherm.

Deze drie punten bevinden zich op de respectievelijke hoogten zK, zL en zT boven het referentiepeil. Voor de afstand tussen de punten K en L geldt:

Bijlage 250273.png

Verder geldt:

RL is de som van de lengtes van de lijnstukken BL en LW

RT is de som van de lengtes van de lijnstukken BT en TW.

R0 is de som van de lengtes van de lijnstukken BK en KW.

Berekening verminderde bodemdemping

De factoren Sw en Sb uit formules als gegeven in Tabel 2.6 (§ 2.8) worden als volgt berekend:

Bijlage 250274.png

waarin he de effectieve schermhoogte is, gedefinieerd als:

Bijlage 250275.png

Berekening schermwerking van ideaal scherm

De schermwerking van een ideaal scherm is gelijk aan H F(Nf).

H wordt als volgt bepaald:

Bijlage 250276.png

i is hierin de octaafbandindex. De minimale hoogte van de top van het scherm ten opzichte van het plaatselijk maaiveld hT waarmee wordt gerekend, is 0,5 m. De maximale waarde van H is 1.

Nf wordt als volgt bepaald:

Bijlage 250277.png

met ε de ‘akoestische omweg’, die wordt gedefinieerd als:

Bijlage 250318.png

De definitie van de functie F is gegeven in de formules 2.25a t/m f uit Tabel 2.7.

Tabel 2.7 De definitie van de functie F met als variabele Nfvoor zes intervallen van Nf (formules 2.25a t/m f).

Bijlage 263410.png

Berekening van correctietermen voor afwijkende schermprofielen

Diffractor op scherm

De waarde van de correctieterm voor een diffractor op een scherm CS,diff volgt uit de methode beschreven in hoofdstuk 7.

Schermtop in de vorm van een T-top

De waarde van de correctieterm voor een schermtop CT volgt uit de methode beschreven in hoofdstuk 5.

Andere profielen

De waarden van de profielafhankelijke correctieterm Cp volgen uit Tabel 2.8.

Tabel 2.8 De profielafhankelijke correctieterm Cp. T is de tophoek (in graden) van de dwarsdoorsnede van het object.

Cp

object

0 dB

– alle gebouwen

– dunne wanden waarvan de hoek met verticaal ≤ 20°

– grondlichamen met 0° ≤ T ≤ 70°

– alle grondlichamen met daarop een dunne wand, als de totale constructiehoogte minder dan twee maal de hoogte van die wand is, of als de wand hoger is dan 3,5 m

– bij toepassing van een diffractor op een scherm, waarvan het effect met de correctieterm CS,diff in rekening wordt gebracht

– bij toepassing van een schermtop, waarvan het effect met de correctieterm CT in rekening wordt gebracht

2 dB

– randen van weglichamen in ophoging

– randen van wegen op een viaduct

– alle grondlichamen met daarop een dunne wand, als de totale constructiehoogte meer bedraagt dan twee maal de hoogte van die wand en de wand niet hoger is dan 3,5 m

– grondlichamen met 70° < T ≤ 165°

In de gevallen waarin het profiel van het afschermend object niet overeenkomt met een van de in Tabel 2.8 genoemde profielen wordt een nader onderzoek naar de schermwerking van dat object verricht.

Indien de isolatiewaarde van de afscherming minder dan 10 dB groter is dan de berekende schermwerking ∆LSWN is nader onderzoek vereist naar de totale geluidsreducerende werking van de afscherming.

2.11. De niveaureductie ΔLR ten gevolge van absorptie bij reflecties

[Regeling vervallen per 01-01-2024]

Voor de berekening van de niveaureductie ten gevolge van de absorptie die optreedt bij reflecties is het volgende gegeven nodig:

Nrefl het aantal reflecties (zie ook § 2.3) tussen bron- en waarneempunt [–].

De berekening verloopt als volgt:

Bijlage 250319.png

waarin δrefl de niveaureductie ten gevolge van één reflectie is. Voor gebouwen en reflecterende geluidsschermen geldt voor alle octaafbanden δrefl = 1 dB. Voor alle andere objecten geldt δrefl = 0 dB voor alle octaafbanden, tenzij het object aantoonbaar geluidabsorberend is uitgevoerd. In dat geval geldt per octaafband δrefl = –10 lg(1 – α), waarin α de geluidsabsorptiecoëfficiënt van het object is in de betreffende octaafband.

2.12. Het octaafbandspectrum van het equivalente geluidsniveau

[Regeling vervallen per 01-01-2024]

Het A-gewogen equivalente geluidsniveau in octaafband i, symbool Leq,i, wordt gegeven door:

Bijlage 250320.png

waarin de betekenis van de grootheden en de uitwerking ervan analoog zijn aan die van formule 2.1.

3. Standaardmeetmethode

[Regeling vervallen per 01-01-2024]

3.1. De meetmethode voor de bepaling van het LAeq

[Regeling vervallen per 01-01-2024]

Bij de bepaling van het equivalente geluidsniveau LAeq ten behoeve van de vaststelling van de geluidsbelasting van de gevel, wordt uitgegaan van de volgende formule:

Bijlage 250321.png

waarbij:

L’Aeq: het met inachtneming van het gestelde in de volgende paragrafen gemeten equivalente geluidsniveau [dB(A)]

ΔE: het verschil in de geluidsemissie tussen de maatgevende verkeerssituatie en de tijdens de meting optredende verkeerssituatie. Deze term wordt als volgt bepaald:

Bijlage 250322.png

met:

Emaatg: het emissiegetal berekend volgens paragraaf 1.5 van hoofdstuk 1 uitgaande van de maatgevende verkeersintensiteiten en -snelheden;

Emeting: het emissiegetal berekend volgens paragraaf 1.5 van hoofdstuk 1 uitgaande van de verkeersintensiteiten en -snelheden optredende tijdens de meetperiode;

CM: de meteocorrectieterm bepaald met de volgende formule:

Bijlage 250323.png

met:

hb: de bronhoogte [m], zijnde de gemiddelde hoogte van het wegdek boven maaiveld vermeerderd met 0,75 m; als de aldus gevonden bronhoogte hb kleiner is dan nul, dan geldt hb = 0 m;

hw: de hoogte van het waarneempunt ten opzichte van het maaiveld [m];

R: de kortste, horizontaal gemeten afstand tussen waarneempunt en het midden van de meest nabij gelegen rijstrook [m].

3.2. Apparatuur

[Regeling vervallen per 01-01-2024]

Voor een meting van het equivalente geluidsniveau LAeq wordt beschikt over:

  • a. een rondomgevoelige microfoon voorzien van windbol;

  • b. een instrument waarmee de A-weging kan worden uitgevoerd (A-filter);

  • c. een instrument dat een directe uitlezing geeft van het geluidsniveau in dB(A);

  • d. een instrument dat het microfoonsignaal verwerkt tot een equivalent geluidsniveau in dB(A) over een instelbare meetperiode;

  • e. een akoestische ijkbron aangepast aan het gebruikte type microfoon;

  • f. een windrichtingmeter;

  • g. een windsnelheidsmeter;

  • h. een apparaat waarmee de snelheid van de passerende voertuigen kan worden geregistreerd.

Combinaties van de onder a t/m e genoemde elementen kunnen tot één apparaat zijn samengevoegd.

De aan genoemde apparatuur gestelde eisen zijn:

  • a t/m d. de relevante eigenschappen voldoen ten minste aan de eisen voor het instrument class 1, bedoeld in publicatie nummer 61672-1 van de International Electrotechnical Commission;

  • e. een akoestische ijkbron wordt iedere twee jaar geijkt in een daartoe uitgerust laboratorium;

  • g. de windsnelheidsmeter heeft, inclusief aanspreekgevoeligheid, ten minste een nauwkeurigheid van 0,5 m/s in het bereik 0–3 m/s en een nauwkeurigheid van 1 m/s bij hogere windsnelheden;

  • h. de voertuigsnelheidsmeter heeft maximaal een nauwkeurigheid van 3% van de te meten voertuigsnelheid.

3.3. Meteorologische randvoorwaarden

[Regeling vervallen per 01-01-2024]

Niet gemeten mag worden:

  • a. bij dichte mist (zicht < 200 m);

  • b. tijdens neerslag;

  • c. bij harde wind (waarbij het windgeruis minder dan 10 dB(A) onder het te meten geluidsniveau ligt);

  • d. als de akoestische eigenschappen van de weg en de bodem tussen weg en waarneempunt ten gevolge van bepaalde weersomstandigheden afwijken van de normale situatie.

  • e. als de weersomstandigheden niet voldoen aan het meteoraam als gegeven in Tabel 3.1. Slechts voor relatief kleine afstanden (R < 10(hb + hw)) is het meteoraam niet van toepassing, tenzij er sprake is van afscherming.

Onder afscherming wordt hier verstaan de situatie waarbij het zicht op de weg vanuit het waarneempunt voor meer dan 30° wordt belemmerd. Hierbij wordt alleen gelet op objecten die zich binnen de openingshoek van de in het meteoraam toegestane windrichtingen bevinden.

Tabel 3.1 Het meteoraam waarin:

meteorologische dag = de periode tussen 1 uur na zonsopgang en 1 uur vóór zonsondergang;

meteorologische nacht = de periode tussen 1 uur vóór zonsondergang en 1 uur na zonsopgang.

 

meteoraam

toegestane windsnelheden

toegestane windrichtingen

meteorologische dag

oktober t/m mei v > 1 m/s

 

juni t/m september v > 2 m/s

– 80° < Φ < 80°

meteorologische nacht

v > 1 m/s

 

v = de gemiddelde windsnelheid tijdens de geluidsmeting, op 10 m hoogte in het open veld nabij de meetlocatie; de nauwkeurigheid waarmee v bepaald moet worden is 1 m/s voor v > 2 m/s en 0,5 m/s voor kleinere v,

Φ = de gemiddelde hoek tussen de gemiddelde windrichting tijdens de meting en de kortste verbindingslijn tussen het waarneempunt en de weg.

Bijlage 250324.png
Figuur 3.1 Definitie van Φ.

3.4. De meetplaats

[Regeling vervallen per 01-01-2024]

Als de meting van L'Aeq dient ter vaststelling van de geluidsbelasting van de gevel van een (nog) niet bestaand gebouw, wordt de microfoon geplaatst in het geplande gevelvlak.

Als de meting van L'Aeq dient ter vaststelling van de geluidsbelasting van de gevel van een bestaand gebouw, wordt de microfoon 2 meter voor die gevel geplaatst. In dit geval wordt het gemeten equivalente geluidsniveau verminderd met 3 dB.

De directe omgeving van de microfoon en het gebied tussen de weg en de microfoon moet in normale toestand zijn. Er bevinden zich geen niet-permanente objecten, die van invloed zijn op het meetresultaat.

Het rijgedrag en de verdeling van de onderscheiden motorvoertuigcategorieën over de verschillende rijstroken is normaal voor het beschouwde weggedeelte.

De microfoon wordt met een zodanige constructie bevestigd dat tijdens de meting geen bewegingen mogelijk zijn. De constructie oefent geen invloed uit op het meetresultaat.

De microfoon is met zijn gevoeligste richting omhoog georiënteerd.

3.5. De meetprocedure

[Regeling vervallen per 01-01-2024]

Tijdens de meetperiode wordt het verkeer op het betreffende weg geteld. Hierbij wordt onderscheid gemaakt in de volgende voertuigcategorieën: lichte, middelzware en zware motorvoertuigen. De meetperiode is zo lang dat ten minste 100 motorvoertuigen zijn gepasseerd, waarbij de verdeling van deze voertuigen over de voertuigcategorieën representatief is voor de verdeling in de maatgevende periode. De meetperiode is niet korter dan 10 minuten.

Andere geluiden dan van het wegverkeer op de betreffende weggedeelte beïnvloeden het meetresultaat niet zodanig dat een afwijking van 0,5 dB of meer optreedt.

De meetapparatuur wordt voor en na de meting geijkt met de ijkbron. Het verschil tussen beide ijkmetingen mag niet groter dan 1 dB zijn.

Het aantal metingen dat in een gegeven situatie noodzakelijk is, wordt gegeven in

Tabel 3.2. Wanneer volgens Tabel 3.2 meer dan één meting is voorgeschreven, moet elke meting op een andere dag worden uitgevoerd. Het eindresultaat in geval van meerdere metingen wordt gegeven door:

Bijlage 250325.png

waarin LAeq,i het volgens formule 3.1 voor meting i berekende equivalente geluidsniveau is.

N is het aantal metingen dat in de betreffende situatie is vereist.

Tabel 3.2 Het minimum aantal metingen afhankelijk van afstand en aanwezigheid van afscherming

afstand

minimum aantal metingen N

zonder afscherming

met afscherming

 

R ≤ 10 (hb + hw)

1

1

10 (hb + hw) <

R ≤ 20 (hb + hw)

1

2

20 (hb + hw) <

R

2

3

4. Wegdekcorrectie

[Regeling vervallen per 01-01-2024]

4.1. Metingen

[Regeling vervallen per 01-01-2024]

4.1.1

Om de wegdekcorrectie voor een bepaald product te bepalen, worden metingen uitgevoerd op ten minste vijf verschillende, geografisch gescheiden werken1) met hetzelfde product volgens de Statistical Pass-By-methode (SPB-methode), beschreven in NEN-EN-ISO 11819-1:2001. Volgens de SPB-methode worden de geluidniveaus gemeten van afzonderlijke voertuigpassages. Het meetpunt ligt op 7,5 meter uit het hart van de rijstrook waarop de te meten voertuigen passeren. Naast het geluidniveau wordt ook de voertuigsnelheid gemeten.

4.1.2

Er wordt onderscheid gemaakt tussen de drie voertuigcategorieën die in artikel 3.2 van de regeling zijn gedefinieerd: lichte motorvoertuigen, middelzware en zware motorvoertuigen. Voor het bepalen van de wegdekcorrectie zijn alleen de gemeten geluidniveaus LAmax van passages van lichte en zware motorvoertuigen van belang. De wegdekcorrectie voor middelzware motorvoertuigen wordt gelijkgesteld aan de wegdekcorrectie voor zware motorvoertuigen. Bij de lichte voertuigen worden de voertuigen, bedoeld in categorie 1b in Annex B van NEN-EN-ISO 11819-1:2001 buiten beschouwing gelaten.

4.1.3

In afwijking van NEN-EN-ISO 11819-1:2001 geldt het volgende:

  • De meethoogte bedraagt 3,0 meter. Wanneer van het betreffende wegdek oudere meetresultaten op 5,0 meter hoogte beschikbaar zijn, die in aanvulling met nieuwe metingen worden gebruikt voor het bepalen van de wegdekcorrectie, worden de nieuwe metingen uitgevoerd op zowel 3,0 als 5,0 meter hoogte.

  • De in NEN-EN-ISO 11819-1:2001 gestelde eisen aan de akoestische eigenschappen van het bodemgebied op de meetlocatie hoeven niet strikt te worden gevolgd, wel wordt aanbevolen om bij de keuze van de meetlocaties zoveel mogelijk met deze eisen rekening te houden.

  • Als richtlijn geldt dat op elke locatie metingen aan ten minste honderd lichte en vijftig zware motorvoertuigen beschikbaar moeten zijn. Maar het kan voorkomen dat deze aantallen op een locatie niet zijn gehaald, bijvoorbeeld omdat er onvoldoende vrachtwagens passeren. Het resultaat van die locatie kan dan wel worden meegenomen bij de verdere analyse voor het vaststellen van de wegdekcorrectie. Uiteindelijk bepaalt de grootte van het 95%-betrouwbaarheidsinterval van het gemiddelde over alle meetlocaties of het eindresultaat betrouwbaar genoeg is.

4.1.4

Op het moment van publicatie van de wegdekcorrectie zijn de achterliggende meetgegevens niet ouder dan 10 jaar.

4.1.5

De luchttemperatuur op 1,2 meter boven het wegoppervlak ligt tijdens de metingen tussen 5°C en 30°C. Bij de gemeten geluidniveaus wordt een temperatuurcorrectie opgeteld, waarmee alle meetresultaten worden genormaliseerd naar een referentietemperatuur van 20°C. De temperatuurcorrecties Ctemp,m voor m = 1 (lichte motorvoertuigen) en m = 3 (zware motorvoertuigen) worden als volgt bepaald uit de luchttemperatuur Tlucht (in graden Celcius op 1,2 meter hoogte boven het wegdek):

Bijlage 250326.png

4.2. Bepalen van het gemiddelde geluidsniveau per voertuigcategorie en per meetlocatie

[Regeling vervallen per 01-01-2024]

4.2.1

Per meetlocatie worden de lineaire regressielijnen voor lichte en zware motorvoertuigen bepaald van het A-gewogen gemeten geluidniveau (na temperatuurcorrectie) als functie van lg(vm), waarin vm de snelheid is van voertuigcategorie m. Er wordt onderscheid gemaakt tussen lichte motorvoertuigen (m = 1) en zware motorvoertuigen (m = 3).

4.2.2

De SPB-meting voor lichte dan wel zware motorvoertuigen is niet bruikbaar voor het vaststellen van de wegdekcorrectie indien bij de gemiddelde snelheid van de gemeten lichte of zware motorvoertuigen de helft van het 95%-betrouwbaarheidsinterval van de regressielijn, na afronding op één decimaal, groter is dan

Bijlage 250327.png

en

Bijlage 250328.png

Hierin is N1 het aantal gemeten lichte motorvoertuigen en N3 het aantal gemeten zware motorvoertuigen op de betreffende meetlocatie. Als voor een voertuigcategorie na uitsluiting van een of meer locaties op grond van deze eis minder dan vijf locaties over blijven, kan voor die voertuigcategorie geen wegdekcorrectie (of verouderingscorrectie, zie 4.4.2) worden bepaald.

4.2.3

Uit de regressielijn volgt voor discrete waarden van de snelheid van 30, 40, .... 130 km/h (in stappen van 10 km/h, voor zware motorvoertuigen t/m 100 km/h), het gemiddelde A-gewogen geluidniveau en het 95%-betrouwbaarheidsinterval van dat gemiddelde.

4.2.4

Bij N1 lichte en N3 zware motorvoertuigen wordt een gemiddeld A-gewogen geluidniveau uit 4.2.3 als ‘betrouwbaar’ gekwalificeerd als de helft van het 95%-betrouwbaarheidsinterval, na afronding op één decimaal, kleiner is dan of gelijk is aan:

Bijlage 250329.png

of

Bijlage 250330.png

4.3. Bepalen van de initiële wegdekcorrectie uit middeling over verschillende locaties

[Regeling vervallen per 01-01-2024]

4.3.1

Met het gemiddelde geluidniveau per voertuigcategorie en per meetlocatie, bepaald overeenkomstig paragraaf 4.2, zijn er bij elke discrete waarde van de snelheid vm (in stappen van 10 km/h) per voertuigcategorie m ten minste vijf gemiddelde waarden van op verschillende locaties k (k = 1, 2, ....) gemeten totale A-gewogen geluidniveaus Lk,m(vm) van voertuigpassages. Van de beschikbare waarden bij iedere snelheid is een deel als ‘betrouwbaar’ gekwalificeerd op basis van de grenzen aan het 95%-betrouwbaarheidsinterval in 4.2.4. Vervolgens wordt bij iedere snelheid gecontroleerd of van deze als betrouwbaar gekwalificeerde waarden de maximale spreiding tussen de verschillende locaties kleiner is dan 2,0 dB(A). Als de spreiding groter is, dan wordt de locatie met de waarde die het meeste afwijkt van het gemiddelde van de als betrouwbaar gekwalificeerde waarden voor de betreffende voertuigcategorie buiten beschouwing gelaten. Indien nodig wordt dit proces herhaald totdat de spreiding kleiner is dan 2,0 dB(A). Blijven er voor een voertuigcategorie minder dan vijf locaties over, dan kan voor die voertuigcategorie geen wegdekcorrectie worden bepaald.

4.3.2

Per voertuigcategorie m wordt van de (ten minste vijf) gemiddelde geluidniveaus Lk,m (vm) van de afzonderlijke meetlocaties bij snelheid vm (in stappen van 10 km/h) een gewogen gemiddelde Lgem,m(vm) berekend op basis van de grootte van het 95%-betrouwbaarheids-interval, volgens:

Bijlage 263411.png

Hierin is Δ95%cik,m de helft van het 95%-betrouwbaarheidsinterval voor locatie k en voertuigcategorie m. In het gemiddelde worden alle waarden Lk,m (vm) meegenomen, dus niet alleen de waarden die op basis van 4.2.4 als betrouwbaar zijn gekwalificeerd.

4.3.3

Bij de gemiddelde waarden over de locaties bij snelheid vm, Lgem,m(vm), wordt Δ95%cigem,m(vm), de helft van de grootte van het bijbehorende betrouwbaarheidsinterval, bepaald, volgens:

Bijlage 263412.png

4.3.4

Uit de gemiddelde waarden over alle locaties Lgem,m(vm) bij discrete waarden van de snelheid vm (in stappen van 10 km/h) wordt per voertuigcategorie m het verband afgeleid tussen het totale A-gewogen geluidniveau en de logaritme van de snelheid, met lineaire regressie volgens am + bm lg (vm/v0,m). De lineaire regressie wordt gebaseerd op de gemiddelde waarden bij snelheid vm die voldoen aan de volgende eisen:

  • lichte motorvoertuigen (m = 1): snelheidsbereik 30–130 km/h en Δ95%cigem,1(vm) (na afronding op één decimaal) ≤ 0,3

  • zware motorvoertuigen (m = 3): snelheidsbereik 30–100 km/h en Δ95%cigem,3(vm) (na afronding op één decimaal) ≤ 0,8.

De referentiesnelheid v0,m is gelijk aan 80 km/h voor lichte motorvoertuigen (m = 1) en 70 km/h voor zware motorvoertuigen (m = 3).

4.3.5

Uit het verschil tussen de waarden am en bm uit de regressie volgens 4.3.4 en de waarden aref,m en bref,m van het referentiewegdek worden de waarden ΔLm en τm bepaald volgens:

Bijlage 250333.png

met:

aref,1 = 77,2 en bref,1 = 30,6 voor lichte motorvoertuigen (m = 1) bij metingen op 3,0 m hoogte,

aref,3 = 84,4 en bref,3 = 27,0 voor zware motorvoertuigen (m = 3) bij metingen op 3,0 m hoogte,

aref,1 = 75,9 en bref,1 = 30,4 voor lichte motorvoertuigen (m = 1) bij metingen op 5,0 m hoogte,

aref,3 = 83,2 en bref,3 = 25,1 voor zware motorvoertuigen (m = 3) bij metingen op 5,0 m hoogte.

4.3.6

Per meetlocatie en per voertuigcategorie wordt het (lineair of rekenkundig) gemiddelde frequentiespectrum in acht octaafbanden (met middenfrequenties van 63 t/m 8000 Hz) berekend over alle gemeten frequentiespectra van individuele voertuigpassages op het moment dat het maximum geluidniveau tijdens de passage optreedt. Vervolgens wordt per octaafband lineair gemiddeld over de locaties, zonder weging op grond van betrouwbaarheid. Als een locatie op grond van 4.2.2 of 4.3.1 buiten beschouwing is gelaten, wordt het frequentiespectrum van die locatie ook in de middeling van de octaafbandwaarden niet meegenomen. Van de octaafbandwaarden van dit over de meetlocaties gemiddelde spectrum wordt de energetische som bepaald. Vervolgens wordt de energetische som van alle octaafbandwaarden afgetrokken, waarna de energetische som over de octaafbanden van het ‘genormeerde’ spectrum gelijk is aan 0 dB(A).

4.3.7

Van de genormeerde octaafbandwaarden uit 4.3.6 worden de octaafbandwaarden anref,i,m van het genormeerde spectrum van het referentiewegdek uit tabel 4.1 afgetrokken. Bij iedere octaafbandwaarde van het verschil wordt vervolgens de waarde ΔLm uit 4.3.5 opgeteld. Dit levert de octaafbandwaarden van de snelheidsonafhankelijke term van de initiële wegdekcorrectie ΔLi,m, waarin i het nummer is van de octaafband (i = 1, 2 ... 8, voor de octaafbanden van 63 Hz t/m 8000 Hz).

Tabel 4.1 Octaafbandwaarden anref,i,m van de genormeerde frequentiespectra van het geluidniveau in het meetpunt op 3 m hoogte en op 5 m hoogte bij het referentiewegdek

Meethoogte

Voertuigcategorie

Middenfrequentie octaafband [Hz]

63

125

250

500

1000

2000

4000

8000

3 m

Lichte motorvoertuigen (m = 1)

–33,2

–27,3

–20,3

–11,7

–2,5

–5,1

–13,6

–24,3

Zware motorvoertuigen (m = 3)

–32,2

–25,5

–17,2

–5,7

–3,0

–7,6

–15,5

–24,9

5 m

Lichte motorvoertuigen (m = 1)

–33,0

–27,6

–20,5

–11,3

–2,6

–4,9

–14,3

–25,1

Zware motorvoertuigen (m = 3)

–32,1

–25,6

–17,2

–6,1

–2,8

–7,5

–16,0

–25,4

4.3.8

De waarden ΔLi,m en τm, leggen de initiële wegdekcorrectie Cinitieel,i,m in octaafbanden vast volgens:

Bijlage 250334.png

De initiële wegdekcorrectie is alleen geldig voor die snelheden waarbij Δ95%cigem,m(vm), na afronding op één decimaal, kleiner is dan of gelijk is aan 0,1 voor lichte motorvoertuigen (m = 1) en kleiner of gelijk is aan 0,4 dB(A) voor zware motorvoertuigen (m = 3). Het geldige snelheidsbereik voor de wegdekcorrectie zal in het algemeen voor lichte en zware motorvoertuigen verschillend zijn.

4.4. Bepalen van de verouderingscorrectie (Ctijd)

[Regeling vervallen per 01-01-2024]

4.4.1

Wanneer de initiële wegdekcorrectie van een specifiek product wordt bepaald volgens de voorafgaande paragrafen 4.1 t/m 4.3 en dit product hoort tot één van de standaard wegdektypen, is het niet noodzakelijk om de verouderingscorrectie Ctijd te bepalen volgens de hieronder beschreven methode. In dat geval kunnen de waarden van Ctijd,i,m worden overgenomen van het standaard wegdektype waartoe het wegdek behoort.

4.4.2

De verouderingscorrectie Ctijd,i,m van een specifiek product volgt per octaafband i en voertuigcategorie m uit het verschil tussen het gemiddelde resultaat van SPB-metingen op locaties met een nieuw wegdek (SPBnieuw,i,m) en het gemiddelde resultaat van SPB-metingen op locaties waar hetzelfde wegdektype of product langer in gebruik is dan 75% van de verwachte levensduur (SPB>75%levensduur,i,m):

Bijlage 250335.png

waarin

Bijlage 250336.png

met de waarden aref,m en bref,m uit 4.3.5, anref,i,m volgens tabel 4.1 en Cinitieel,i,m zoals bepaald in 4.3.8. Voor het vaststellen van de verouderingscorrectie wordt een vaste waarde van de snelheid vx,m aangenomen in het snelheidsbereik dat van toepassing is voor situaties waar het betreffende wegdek voor is bedoeld.

Voor wegdekken in stedelijke situaties geldt vx,m = 50 km/h en voor wegdekken bedoeld voor auto- en autosnelwegen wordt vx,m gelijk gesteld aan 80 of 110 km/h.

De waarden SPB>75%levensduur,i,m worden bepaald uit de resultaten van SPB-metingen op ten minste vijf verschillende locaties waar het wegdek ouder is dan 75% van de verwachte levensduur. Bij metingen op de locaties met oudere wegdekken wordt ervoor gezorgd dat het snelheidsbereik van passerende motorvoertuigen zoveel mogelijk overeenkomt met het snelheidsbereik van de metingen op de nieuwe wegdekken. Na temperatuurcorrectie volgens 4.1.5 worden per meetlocatie en per voertuigcategorie de regressielijnen bepaald volgens 4.2.1 en wordt de toets 4.2.2 uitgevoerd bij snelheid vx,m (in plaats van bij de gemiddelde snelheid). Na eventuele uitsluiting van meetlocaties op grond van deze toets zijn per voertuigcategorie ten minste vijf locaties beschikbaar om de verouderingscorrectie te kunnen bepalen. Van die locaties wordt:

  • a. het gemiddelde A-gewogen geluidniveau Lgem,m(vx,m) bepaald door de waarden van de regressielijnen bij snelheid vx,m rekenkundig te middelen en

  • b. het gemiddelde frequentiespectrum berekend over de gemeten individuele voertuigpassages (per voertuigcategorie afzonderlijk) en genormeerd volgens 4.3.6, zodanig dat de energetische som over de octaafbanden van het genormeerde spectrum gelijk is aan 0 dB(A).

Sommatie van Lgem,m(vx,m) en de octaafbandwaarden van het genormeerde spectrum levert SPB>75%levensduur,i,m.

4.4.3

Als er nog geen wegdekken beschikbaar zijn die al langer in gebruik zijn dan 75% van de verwachte gemiddelde levensduur, is er de mogelijkheid om de waarden SPB>75%levensduur,i,m via extrapolatie af te leiden uit de resultaten van SPB-metingen op de (ten minste) vijf locaties met nieuwe wegdekken en op (ten minste) vijf locaties met wegdekken die minimaal vier jaar in gebruik zijn. Daarbij moet van elke locatie met een ten minste vier jaar oud wegdek bekend zijn hoe lang het wegdek al op die locatie in gebruik is. Van de locaties worden (na temperatuurcorrectie volgens paragraaf 4.1.5) per voertuigcategorie de regressielijnen bepaald volgens 4.2.1 en wordt de toets volgens 4.2.2 uitgevoerd bij snelheid vx,m (in plaats van bij de gemiddelde snelheid). Na eventuele uitsluiting van meetlocaties op grond van deze toets moeten per voertuigcategorie ten minste vijf locaties beschikbaar zijn. Van deze locaties wordt SPB>4jaar,m bepaald door de (ten minste vijf) waarden van de regressielijnen bij snelheid vx,m rekenkundig te middelen. Het verloop tussen SPBnieuw,m en SPB>4jaar,m wordt geëxtrapoleerd van de gemiddelde gebruiksduur Tggdvan de meetlocaties met ten minste vier jaar oude wegdekken naar 80% van de verwachte gemiddelde levensduur T80% van het betreffende wegdek:

Bijlage 250337.png

De waarden SPB>75%levensduur,i,m worden voor iedere octaafband i gelijk gesteld aan SPB>75%levensduur,m en gebruikt in formule 4.12 om de verouderingscorrectie Ctijd,i,m te bepalen.

4.5. Bepalen van de wegdekcorrectie uit de initiële wegdekcorrectie en Ctijd

[Regeling vervallen per 01-01-2024]

4.5.1

De wegdekcorrectie voor octaafband i, voertuigcategorie m en snelheid vm volgt uit ΔLi,m, τm en Ctijd,i,m volgens:

Bijlage 250338.png

met

Bijlage 250340.png

De referentiesnelheid v0,m is gelijk aan 80 km/h voor lichte motorvoertuigen (m = 1) en 70 km/h voor middelzware en zware motorvoertuigen (m = 2 of m = 3).

4.5.2

Standaardrekenmethode 1 maakt gebruik van een wegdekcorrectie in dB(A), waarvoor geldt:

Bijlage 250341.png

De waarde σm volgt uit σi,m en de octaafbandwaarden van het genormeerde standaardspectrum voor het geluid van wegverkeer, Lweg,i,m, uit tabel 4.2:

Bijlage 263413.png
Tabel 4.2 Octaafbandwaarden Lweg,i,m voor octaafband i en voertuigcategorie m van het genormeerde standaardspectrum voor wegverkeersgeluid

i =

1

2

3

4

5

6

7

8

Middenfrequentie octaafband [Hz]

63

125

250

500

1000

2000

4000

8000

L weg,i,1

(lichte motorvoertuigen)

–24

–23

–21

–13

–2,5

–5

–13

–27

L weg,i,3

(zware motorvoertuigen)

–17

–17

–15

–8

–3

–6,5

–14

–27

4.5.3

Voor middelzware voertuigen (m = 2) wordt de wegdekcorrectie gelijk gesteld aan de wegdekcorrectie voor zware voertuigen.

5. Rekenregel schermtop

[Regeling vervallen per 01-01-2024]

5.1. Definitie

[Regeling vervallen per 01-01-2024]

In dit hoofdstuk wordt de rekenregel beschreven voor de bepaling van de waarde van de correctieterm van een schermtop (CT), als bedoeld in paragraaf 2.10 van hoofdstuk 2 van deze bijlage.

De in dit hoofdstuk beschreven rekenregel is alleen toepasbaar voor een zogenaamde ‘T-top’, die voldoet aan de volgende geometrische randvoorwaarden (zie Figuur 5.1):

  • punt A ligt aan de weg- of bronzijde van het scherm. De (horizontale) afstand tussen punt A en punt B is ten minste 1,0 meter. Punt A ligt ten minste op gelijke hoogte als punt B met een tolerantie van ± 0,1 meter;

  • bij de aansluiting van de T-top op het verticale scherm bij het punt O zijn spleten tot maximaal 10 mm toelaatbaar;

  • punt C ligt aan de ontvangerzijde van het scherm. De (horizontale) afstand tussen punt B en punt C is ten minste 1,0 meter. Punt C ligt ten minste op gelijke hoogte als punt B ± 0,1 meter.

Bijlage 250345.png
Figuur 5.1 Schematische weergave van de T-top.

Daarnaast gelden de volgende eisen aan geluidsisolatie en -absorptie:

  • Geluidsisolatie van de T-top: Tussen punten A en B en tussen punten B en C is geluidsisolerend materiaal aanwezig, waarvan de geluidsisolatie (DLR) minimaal 20 dB(A) is, bepaald volgens NEN-EN 1793-2 voor het standaard-wegverkeersgeluidspectrum. Voor gesloten (niet poreuze) panelen is hieraan voldaan als het oppervlaktegewicht op de lichtste plaats ten minste 15 kg/m2 is.

  • Geluidsabsorptie van de T-top: Het geluidsabsorberend materiaal is over de gehele breedte tussen punten A en C aanwezig boven de geluidsisolerende panelen. Het geluidsabsorberende materiaal bevindt zich niet onder de denkbeeldige lijn tussen punten A en C. De initiële geluidsabsorptie van een nieuwe T-top is zodanig dat de niveaureductie door absorptie DLα, zoals bepaald volgens NEN-EN 1793-1 ten minste 9 dB(A) is voor wegverkeerslawaai.

5.2. Rekenregel

[Regeling vervallen per 01-01-2024]

De waarde van de correctieterm CT is onafhankelijk van de frequentie en wordt voor iedere bronpunt – waarneempunt relatie afzonderlijk berekend. De berekening gebeurt in twee stappen.

  • 1. De eerste stap bepaalt een kromme C in het verticale vlak door een bronpunt en een waarneempunt. De kromme start voor elk sectorvlak in het punt op de rand van de schermtop aan de bronzijde. De kromme wordt beschreven door formule 5.1.

    Bijlage 250347.png

    met:

    zC(rTW): de hoogte van de kromme C van de bron ter plaatse van het waarneempunt;

    z0(rTW): de hoogte van de zichtlijn van de bron ter plaatse van het waarneempunt;

    rTW: de horizontale afstand tussen de rand van de schermtop (aan de bronzijde) en de ontvanger;

    C1 en C2: constanten.

    De parameters zijn grafisch weergegeven in Figuur 5.2 en Figuur 5.3.

    Bijlage 250348.png
    Figuur 5.2 Dwarsdoorsnede van de berekening van de verticale afstand dC tussen de kromme C en de ontvanger.
    Bijlage 250349.png
    Figuur 5.3 Bovenaanzicht van de berekening van de afstand rTW tussen het scherm en de ontvanger.

    De verticale afstand dC tussen de kromme C en het waarneempunt wordt berekend volgens:

    Bijlage 250350.png

    Daarbij is:

    zW: de hoogte van het waarneempunt ten opzichte van het referentiepeil (horizontaal vlak waarin z=0) [m];

    zC: de hoogte van de kromme C ten opzichte van het referentiepeil ter plaatse van het waarneempunt [m].

    De term dC is negatief als het waarneempunt lager is dan de kromme C.

  • 2. In de tweede stap wordt de waarde van CT bepaald volgens de in Figuur 5.4 weergegeven procedure.

    Naast de reeds vermelde parameters dC en rTW, zijn de volgende gegevens nodig:

    RB: de horizontaal gemeten afstand tussen de bron en het geluidsscherm langs een bepaald bron-waarneempunt-pad [m];

    Rw: de horizontaal gemeten afstand tussen waarneempunt en scherm langs een bepaald bron-waarneempunt-pad [m];

    RBL: de afstand tussen bron en geluidsscherm gemeten langs de kortste verbindingslijn [m];

    RWL: de afstand tussen geluidsscherm en waarneempunt gemeten langs de kortste verbindingslijn [m];

    zT: de hoogte van de top van de afscherming ten opzichte van het referentiepeil [m];

    zW: de hoogte van het waarneempunt ten opzichte van het referentiepeil [m].

    Ook deze parameters zijn grafisch weergegeven in Figuur 5.2 of Figuur 5.3.

    Voor de bepaling van de waarde van de correctieterm van een schermtop (CT) ligt het referentiepeil op de hoogte van het maaiveld ter plaatse van de bron.

    Bijlage 250351.png
    Figuur 5.4 Procedure voor de bepaling van de waarde van CT.

    De basisberekening van CT is verloopt volgens de volgende formule:

    Bijlage 250352.png

    met:

    C3 en A: constanten.

    De waarden van de constanten voor de in paragraaf 5.1 beschreven T-top zijn weergegeven in de onderstaande tabel. De constante C0 heeft als waarde de breedte van de rand van de T-top aan de wegzijde ten opzichte van het midden van het scherm.

    Tabel 5.1 Waarden van de constanten ter bepaling van de correctieterm voor een schermtop

    Constante

    C0

    C 1

    C 2

    C 3

    A

    Waarde voor T-top

    1,0

    8,3

    150

    0,13

    5,0

6. Rekenregel middenbermscherm

[Regeling vervallen per 01-01-2024]

6.1. Definitie

[Regeling vervallen per 01-01-2024]

In dit hoofdstuk wordt de rekenregel beschreven voor de bepaling van de waarde van de correctieterm voor een middenbermscherm, als bedoeld in paragraaf 2.10 van deze bijlage.

De in dit hoofdstuk beschreven rekenregel is alleen toepasbaar voor een zogenaamd middenbermscherm dat voldoet aan de volgende voorwaarden.

De middenbermcorrectie, Cmbs, is van toepassing op die afschermende objecten die bestaan uit dunne wanden en waarvoor geldt dat in het betreffende pad tussen bron- en waarneempunt zich behalve het genoemde afschermende object een tweede afschermend object bevindt op een afstand van, loodrecht gemeten, ten hoogste 50 meter en waarvan de hoogte ten minste gelijk is aan de bronhoogte. Daarnaast bevindt zich tussen beide afschermende objecten ten minste één rijlijn. Als niet aan deze voorwaarden voldaan is, dan wordt de afschermende werking van het ‘middenbermscherm’ op eenzelfde manier bepaald als van andere afschermende objecten, zoals beschreven in paragraaf 2.10 van deze bijlage.

Bijlage 250353.png
Figuur 6.1 Schematische weergave van situaties waarbij het effect van een middenbermscherm wordt bepaald conform de rekenregel middenbermscherm.

Indien het tweede afschermende object een gebouw is, dan bevindt dat gebouw zich eveneens op een afstand van het middenbermscherm van ten hoogste 50 meter. Deze afstand is gemeten loodrecht op het middenbermscherm en is de afstand tussen beide voor de afscherming bepalende diffractieranden. Zie figuur 6.1.

Het effect van een wand tussen de beide rijbanen in tunnelbakken, een soort middenbermscherm, wordt niet op deze wijze bepaald omdat deze situatie extra complex is en vooralsnog niet is geverifieerd of de effecten op een juiste wijze worden beschreven. Een weg wordt geacht in een tunnelbak te liggen als er sprake is van een betonnen bakconstructie waarbij het niveau van het wegdek ten minste 2 meter onder het maaiveld ligt. Nader onderzoek naar toepassingsmogelijkheden voor tunnelbakken wordt nog uitgevoerd.

6.2. Rekenregel

[Regeling vervallen per 01-01-2024]

De correctieterm voor een middenbermscherm, Cmbs, wordt bepaald in twee stappen:

  • 1. Er worden drie gebieden onderscheiden waarin het waarneempunt zich kan bevinden;

  • 2. Per gebied wordt aangegeven hoe de middenbermcorrectie moet worden bepaald.

De middenbermcorrectie voor een waarneempunt is gelijk aan de middenbermcorrectie zoals die wordt bepaald voor het gebied waarin het waarneempunt zich bevindt.

Stap 1: de te onderscheiden gebieden

Er wordt onderscheid gemaakt in drie gebieden zoals weergegeven in figuur 6.2. De lijnen zijn respectievelijk de lijn van het bronpunt over het dichtstbijzijnde afschermende object gebogen conform de straal met een kromming als aangegeven in paragraaf 2.10 en de gebogen lijn over het verst afgelegen afschermende object met eenzelfde kromming.

Bijlage 250354.png
Figuur 6.2 Indeling van de gebieden ter bepaling van effect middenbermscherm.

gebied A: het gebied boven beide lijnen;

gebied B: het gebied tussen de twee lijnen;

gebied C: het gebied onder beide lijnen.

Het waarneempunt ligt boven de gekromde lijn door de top van het middenbermscherm indien:

Bijlage 250355.png

Het waarneempunt ligt boven de gekromde lijn door de top van het zijscherm indien:

Bijlage 250356.png

waarin:

zw: de hoogte van het waarneempunt ten opzichte van het referentiepeil;

zb: de hoogte van de bron ten opzichte van het referentiepeil;

zmbs: de hoogte van het middenbermscherm ten opzichte van het referentiepeil;

zzs: de hoogte van het zijscherm ten opzichte van het referentiepeil;

Rmbs: de horizontale afstand tussen bron en middenbermscherm;

Rzs: de horizontale afstand tussen bron en zijbermscherm;

R: de horizontale afstand tussen waarneempunt en bronpunt.

Binnen de gebieden B en C wordt Cmbs berekend op basis van de hoek ξ tussen de twee lijnen die gebied B begrenzen. Voor ontvangers binnen gebied B dient ook de hoek ψ tussen de gekromde lijn van de bron naar de ontvanger en de gekromde lijn van de bron door de top van het zijscherm te worden bepaald, zie figuur 6.3.

Bijlage 250357.png
Figuur 6.3 Illustratie van de hoeken ξ en ψ.

ξ: de hoek tussen de raaklijnen in het bronpunt aan de gekromde lijnen van de bron over het maatgevende diffractiepunt van beide afschermende objecten;

ψ: de hoek tussen de raaklijnen in het bronpunt aan de gekromde lijnen van de bron over het maatgevende diffractiepunt van het zijbermscherm en de gekromde lijn tussen het bronpunt en het waarneempunt.

De hoeken ξ en ψ worden op de volgende wijze berekend:

Bijlage 250359.png

Stap 2: Berekening van Cmbs

De waarde van Cmbs wordt als volgt bepaald:

Cmbs = Cmbs (A) als het waarneempunt zich in gebied A bevindt;

Cmbs = Cmbs (B) als het waarneempunt zich in gebied B bevindt;

Cmbs = Cmbs (C) als het waarneempunt zich in gebied C bevindt.

Bepaling Cmbs (A)

Voor waarneempunten in gebied A wordt Cmbs (A) bepaald volgens de methode zoals beschreven in paragraaf 2.10:

Bijlage 250361.png

waarin:

H de effectiviteit van het scherm is,

F(Nf) een functie met argument Nf (het fresnelgetal);

Bepaling Cmbs (C)

Voor waarneempunten in gebied C geldt een vaste waarde die wordt berekend aan de hand van hoek ξ (in graden) tussen de twee lijnen die gebied B begrenzen. Hoek ξ wordt ter plaatse van de bron bepaald. De correctie wordt gegeven door:

Bijlage 250363.png
Bijlage 250365.png

waarin i de octaafbandindex is.

Bepaling Cmbs (B)

Voor waarneempunten in gebied B is de correctie afhankelijk van de ligging van het waarneempunt. Deze wordt uitgedrukt in de hoek ψ (in graden) tussen de gekromde lijn van de bron naar de ontvanger en de gekromde lijn van de bron naar het zijscherm. Cmbs (B) wordt bepaald volgens de onderstaande formules:

Bijlage 250367.png

waarin i de octaafbandindex is.

De correctie in gebied B wordt uitsluitend toegepast indien de lijn door de top van het middenbermscherm hoger ligt dan die door de top van het zijscherm. De hoek ξ heeft dan een positieve waarde. In situaties waarin de hoek ξ negatief is (bij een relatief laag middenbermscherm) worden waarneempunten binnen gebied B behandeld zoals in gebied C.

Hoofdstuk 7. Reken- en meetregel diffractor

[Regeling vervallen per 01-01-2024]

7.1. Definitie

[Regeling vervallen per 01-01-2024]

In dit hoofdstuk wordt de rekenregel beschreven voor de bepaling van de correctieterm voor een diffractor als bedoeld in paragraaf 2.10 van deze bijlage. De in dit hoofdstuk beschreven rekenregel voor CS,diff (zie 7.2) is alleen toepasbaar voor een diffractor die op maaiveldniveau is ingegraven. De regel is niet toepasbaar voor een diffractor op een afschermend object of grondlichaam. De rekenregel voor CS,diff (zie 7.3) is alleen bedoeld voor een diffractor die op een geluidscherm als schermtop is toegepast.

7.2. Rekenregel Cdiff

[Regeling vervallen per 01-01-2024]

Het effect van een diffractor die op maaiveldniveau is ingegraven wordt berekend volgens de formule:

Bijlage 268961.png

waarbij wordt verstaan onder:

CS,diff,hard: het diffractoreffect met een nabijgelegen volledig harde bodem voor octaafbandindex i

Bvoor: de gemiddelde absorptiefractie tussen de diffractor en de bron met een maximum horizontale afstand van 10 meter (vanaf de rand van de diffractor)

Bna: de gemiddelde absorptiefractie tussen de diffractor en de ontvanger met een maximum horizontale afstand van 10 meter (vanaf de rand van de diffractor)

Nf: het fresnelgetal.

Het fresnelgetal Nf wordt bepaald volgens de methode beschreven in hoofdstuk 2.10. Hierbij geldt:

Bijlage 268962.png

waarbij wordt verstaan onder:

Bijlage 268963.png

: de hoogte van de bron ten opzichte van het referentiepeil

Bijlage 268964.png

: de hoogte van het midden van de diffractor, vermeerderd met 65 cm, ten opzichte van het referentiepeil met een maximum waarde gelijk aan zB-10 cm

Bijlage 268965.png

: de hoogte van het waarneempunt ten opzicht van het referentiepeil en

Bijlage 268966.png

waarbij wordt verstaan onder:

R: de horizontaal gemeten afstand tussen bron- en waarneempunt [m].

In het geval van afscherming achter de diffractor, vanuit de bron gezien, wordt het fresnelgetal bepaald door de positie van de top van het maatgevende scherm als waarneempunt te beschouwen. In het geval van afscherming voor de diffractor wordt het fresnelgetal bepaald door de positie van de top van dit scherm als bronpositie te beschouwen.

Ci,diff,hard wordt berekend volgens de formules:

Bijlage 268967.png

waarbij wordt verstaan onder:

Ai,diff: de producteigenschap van de diffractor voor octaafbandindex i

dd: de totale breedte van de diffractor

rd: de afstand van het rijlijnsegment tot het midden van de diffractor

θ: de hoek, beschouwd in het horizontale platte vlak, van de zichtlijn met de normaal van de diffractor.

7.2A. Rekenregel CS,diff

[Regeling vervallen per 01-01-2024]

Bij het toepassen van de diffractor op een scherm wordt de hoogte van de top van de afscherming (zT) bepaald door de hoogte van het scherm inclusief de extra hoogte van de diffractor.

Het diffractoreffect wordt berekend met de volgende formule:

Bijlage 268975.png

en

Bijlage 268976.png

met:

Ai,S,diff: de producteigenschap van de diffractor voor octaafbandindex i bepaald volgens de meetmethode uit 7.5

Nf het fresnelgetal.

Het fresnelgetal Nf wordt bepaald volgens de methode beschreven in hoofdstuk 2.10. Hierbij geldt:

zB: de hoogte van de bron ten opzichte van het referentiepeil.,

zT: de hoogte van het scherm inclusief diffractor, ter plaatste van het diffractiepunt, vermeerderd met 65 cm ten opzichte van het referentiepeil,

zW: de hoogte van het waarneempunt ten opzichte van het referentiepeil.

7.3. Meettechnische bepaling producteigenschappen van een diffractor

[Regeling vervallen per 01-01-2024]

7.3.1. Algemeen

[Regeling vervallen per 01-01-2024]

De producteigenschappen Ai,diff worden volgens de regels in dit hoofdstuk bepaald.

Deze methode is geschikt voor het bepalen van akoestische eigenschappen van een diffractor onder de volgende voorwaarden:

  • De diffractor is bedoeld om langs een weg geplaatst te worden op dezelfde hoogte als de weg.

  • Metingen van de geluiddruk worden uitgevoerd met een afgedekte en onafgedekte diffractor.

  • Een geluidbron, zoals een luidspreker, wordt dicht bij de grond gebruikt.

  • Een akoestisch harde bodem is aanwezig tussen de geluidbron en de microfoonpositie.

  • De akoestische eigenschappen worden bepaald in 1/3 octaafbanden van 100 t/m 2500 Hz.

  • De omrekening naar octaafbanden vindt plaats door toepassing van het standaard geluidspectrum voor wegverkeer zoals opgenomen in NEN-EN 1793-3:1997.

7.3.2. Meetopstelling en omstandigheden

[Regeling vervallen per 01-01-2024]

Eisen meetopstelling:

Harde, vlakke bodem

Ingegraven diffractor

Geen reflecterende objecten in de omgeving

Minimale lengte diffractor van 30 meter

Afdekplaten met voldoende massa om een akoestisch harde bodem te representeren (kunststof rijplaten)

De metingen zullen voldoen aan NEN-EN 1793-4:2015 op de volgende aspecten:

  • Meetapparatuur

  • Testsignaal

  • Achtergrondgeluid

  • Wind

  • Temperatuur

Metingen worden uitgevoerd met een luidspreker met een hoogte tussen 10 en 20 cm boven de bodem (het wegdek), op een afstand van 1.70 meter tot de voorste rand van de diffractor. De microfoon bevindt zich op 1.20 meter hoogte en op 7.5 meter afstand van de luidspreker. Daarnaast wordt er gemeten met twee aanvullende luidsprekerposities. Deze metingen vinden plaats onder een hoek van +45 en –45 graden. De afstand tussen microfoon en luidspreker is hier 7.5 ∙ √2 =10.6 m. Eventueel kan alleen onder een hoek van +45 of –45 graden gemeten worden waarbij het meetresultaat voor beide hoeken geldt. Dan reduceert de minimale lengte van de diffractor tot 22.5 meter.

Een tweede (referentie) microfoon voor het bepalen van de bronsterkte wordt op 1 meter van de luidspreker geplaatst.

De bron- en meetposities zijn weergeven in figuur 7.1.

Bijlage 263416.png
Figuur 7.1: Schematische voorstelling van de meetposities met hoeken θ van –45, 0 en 45 graden.

7.3.3. Meetprocedure

[Regeling vervallen per 01-01-2024]

Voor iedere meetpositie wordt een geluidoverdrachtmeting uitgevoerd met zowel een afgedekte als onafgedekte diffractor. Voor het frequentiebereik van 100 t/m 2500 Hz wordt, per 1/3 octaafband, het verschil in geluidniveau op de referentiepositie (1 meter van de luidspreker) en op de meetmicrofoon bepaald.

Voorafgaand aan de metingen met afgedekte diffractor wordt, met dezelfde procedure, een meting op een vlakke volledig harde bodem uitgevoerd. De meetopstelling met afgedekte diffractor is geschikt voor gebruik indien voor iedere 1/3 octaafband het verschil tussen de meting op harde bodem en die met de afgedekte diffractor kleiner is dan 2dB.

Deze meetprocedure is geïllustreerd in figuur 7.2

Bijlage 263417.png
Figuur 7.2: Bepaling van het diffractoreffect per 1/3 octaafband Aj,diff,0 bij één hoek (hier 0 graden).

Per 1/3 octaafband j wordt berekend door:

Bijlage 268973.png

De meetprocedure wordt herhaald voor –45 en +45 graden2 .

Vervolgens wordt per 1/3 octaafband het effect van de drie hoeken energetisch gemiddeld door

Bijlage 268974.png

Het effect per octaafband i, Aj,diff,, wordt berekend door de bijdrage van het diffractoreffect van de 3 1/3 octaafband waarden in de betreffende octaafband te wegen met het wegverkeerspectrum uit NEN=EN 1793-3:1997.

7.3.6. Akoestisch rapport

[Regeling vervallen per 01-01-2024]

Van de metingen wordt een akoestisch rapport opgesteld. In dit rapport zijn tenminste de volgende gegevens opgenomen:

  • Naam van het meetbureau

  • Datum en locatie testmetingen

  • Omschrijving van de meetlocatie

  • Omschrijving resultaat controlemeting bij harde bodem en afgedekte diffractor

  • Beschrijving van de gebruikte meetapparatuur

  • Foto’s van de meetopstelling en geteste diffractor, zowel bedekt als onbedekt

  • Omschrijving van de diffractor, waaronder type, afmetingen, waaronder de breedte, en fabrikant

  • Meteorologische omstandigheden

  • Resultaten van de metingen in 1/3 octaafbanden

  • Rapportage van Adiff in 1/3 octaafbanden en in 1/1 octaafbanden.

7.4. Meettechnische bepaling producteigenschappen van een diffractor op scherm

[Regeling vervallen per 01-01-2024]

7.4.1. Meetmethode

[Regeling vervallen per 01-01-2024]

De producteigenschappen Ai,S,diff worden bepaald door metingen uit te voeren volgens de norm NEN-EN 1793-4:2015. Dit betreft het uitvoeren van geluidoverdrachtmetingen aan een testopstelling met een 4 meter hoog geluidscherm, met en zonder de diffractor.

Bij de meting met de diffractor op het scherm wordt de geometrie van bron- en ontvangerposities opgehoogd met de extra hoogte van de diffractor. Deze extra hoogte wordt expliciet opgenomen in de meetrapportage.

Het resultaat van de metingen is een zogenaamde diffractie index, die een maat is voor het extra effect van de schermtop, ten opzichte van het basisscherm zonder top.

Ten opzichte van NEN-EN 1793-4:2015 worden de volgende afwijkingen toegepast:

  • a. metingen worden alleen uitgevoerd met een reflecterend scherm,

  • b. de uiteindelijke middeling van het diffractoreffect voor de verschillende meetposities wordt lineair in plaats van energetisch uitgevoerd.

Voor het middelen van de posities geldt:

  • a. eerst wordt voor iedere 1/3 octaafband (j) per hoek (h=0 of h=45 graden voor ieder van de meetposities (k=1 t/m 5) en bronhoogte (b=1 t/m 2) voor het scherm met diffractor (t=1) en scherm zonder diffractor (t=2) de diffractie index bepaald conform onderstaande formule.

    Bijlage 268977.png
  • b. vervolgens wordt per meetpunt k het verschil bepaald tussen DIj,k bepaald voor het scherm met diffractor en zonder diffractor volgens:

    Bijlage 268978.png
  • c. vervolgens vindt lineaire middeling plaats over alle meetposities k (5), hoeken h (2), en bronhoogtes b (2) volgens

    Bijlage 268979.png

Het effect per octaafband, Ai,S,diff, wordt berekend door de bijdrage van het diffractoreffect van de 1/3 octaafbandwaarden in de betrokken octaafband te wegen met het wegverkeerspectrum uit NEN-EN 1793-3:1997.

7.4.2. Akoestisch rapport

[Regeling vervallen per 01-01-2024]

Van de metingen wordt een akoestisch rapport opgesteld conform de vereisten in de meetnorm EN 1793-4. Aanvullend wordt de extra hoogte van bron- en ontvangerposities die is aangehouden bij de meting met de diffractor op het scherm vermeld.

8. Toelichting

[Regeling vervallen per 01-01-2024]

8.1. Begrippen

[Regeling vervallen per 01-01-2024]

In de definitie van maatgevende verkeersintensiteit worden de termen ‘het voor de geluidsbelasting bepalende jaar’ en ‘een representatief tijdvak’ gebruikt. Het akoestisch onderzoek richt zich, voor wegen die niet op de geluidplafondkaart staan, op het maatgevende (dat wil zeggen het voor de geluidsbelasting bepalende) jaar en (in dat jaar) op een periode die in akoestische zin, voor het gehele jaar representatief is. Voor zulk een periode (het representatieve tijdvak) wordt het zogenaamde langtijdig equivalent geluidsniveau bepaald. Indien de ene dag ten aanzien van verkeersintensiteiten en verkeerssamenstelling niet significant verschilt van een andere dag, behoeft het representatieve tijdvak niet langer dan een dag te zijn. Daar waar periodieke verschijnselen optreden met betrekking tot het verkeersbeeld, moeten langere tijdvakken worden beschouwd. De in het tijdvak van het voor de geluidsbelasting bepalende jaar optredende variabele intensiteiten worden rekenkundig gemiddeld tot een representatieve verkeersintensiteit: de maatgevende verkeersintensiteit.

In de gevallen waarin zich geen bijzondere omstandigheden voordoen kan als het maatgevende jaar worden aangehouden het tiende jaar na openstelling of reconstructie van de weg of, in bestaande situaties, het tiende jaar na het akoestisch onderzoek. Dit geldt uiteraard niet bij de bepaling van de ‘heersende waarde’ als bedoeld in de reconstructiebepalingen (artikel 100, tweede lid, onder a, van de wet). In dat geval wordt uitgegaan van de (jaargemiddelde) verkeersintensiteiten op het tijdstip waarop een aanvang wordt gemaakt met de reconstructie.

Voor wegen die op de geluidplafondkaart staan, is het akoestisch onderzoek niet gericht op het maatgevende jaar, maar op het geldende geluidproductieplafond. Dat is geregeld in artikel 3.9. Alle benodigde gegevens voor het opnemen van de bron in het akoestisch onderzoek zijn te vinden in het openbare geluidregister.

In de definitie van verkeerssnelheid is het begrip ‘representatief te achten snelheid’ opgenomen. Als de representatief te achten verkeerssnelheid kan in principe de maximale wettelijke snelheid worden aangehouden. Echter indien wordt aangetoond dat deze wettelijke snelheid niet overeen komt met de gemiddelde snelheid op het wegvak, dan kan hiervan gemotiveerd worden afgeweken.

In het tweede lid zijn categorieën motorvoertuigen onderscheiden. Gebleken is dat motorrijwielen slechts een zodanig gering deel uitmaken van de totale verkeersstroom, dat ze doorgaans ook geen significante invloed hebben op het equivalente geluidsniveau. Ze zijn daarom niet opgenomen in de in ogenschouw te nemen categorieën motorvoertuigen. Overigens wordt geen uitspraak gedaan over de hinderlijkheid van motorrijwielen. Door bepaald rijgedrag en de staat van onderhoud kunnen motorrijwielen soms als bijzonder hinderlijk worden ervaren.

In gevallen waar voertuigentypen als bromfietsen en trams een relevante bijdrage leveren aan het equivalent geluidsniveau, kan nader onderzoek nodig zijn. In de toelichting bij de bijlagen is daarvoor een handreiking gedaan. In dergelijke gevallen is een beschrijving en verantwoording van de gekozen methode nodig.

De in dit artikel gegeven categorie-indeling is gekozen om visuele verkeerstellingen mogelijk te maken. Automatische telapparatuur is vaak gebaseerd op een afwijkende categorie-indeling (bv met als onderscheidend criterium de lengte van de voertuigen). De categorie-indeling van de automatische tellingen kan meestal niet één op één worden ‘terugvertaald’ naar de categorie-indeling van dit artikel. De verschillen in het equivalent geluidsniveau die hierdoor zullen optreden, zijn meestal gering, zodat het gebruik van de geautomatiseerde telcijfers geen bezwaar hoeft te ontmoeten. Er moet echter wel een verantwoording worden gegeven waaruit blijkt dat het verschil bij de gebruikte telmethode op het betreffende wegtype gering is (minder dan een halve decibel). Deze verantwoording hoeft niet voor ieder individueel akoestisch onderzoek te worden afgelegd. Volstaan kan worden met een verantwoording per telmethode, zonodig uitgesplitst naar de verschillende verkeerssamenstellingen die kunnen voorkomen op de wegen waarop de automatische telling wordt uitgevoerd.

8.2. Standaardrekenmethode 1

[Regeling vervallen per 01-01-2024]

8.2.1. Emissiegetal

[Regeling vervallen per 01-01-2024]

De emissiegetallen voor lichte motorvoertuigen zijn aangepast ten opzichte van de emissiegetallen in het Reken- en meetvoorschrift geluidhinder 2006. De actualisatie is gebeurd op basis van emissiemetingen in 2009 en 2010.

Ten aanzien van de verkeerssnelheden wordt opgemerkt dat de betrekkingen 1.4 tot en met 1.6 zijn gebaseerd op gemiddelde snelheden die liggen in de volgende intervallen: 30 ≤ vlv ≤160 km/h, 30 ≤ vmv ≤ 110 km/h, 30 ≤ vzv ≤ 110 km/h.

8.2.2. Optrekcorrectie

[Regeling vervallen per 01-01-2024]

De optrekcorrectie Coptrek brengt het effect in rekening van afremmend en optrekkend verkeer nabij kruisingen van wegen en het effect van snelheidsbeperkende obstakels zoals minirotondes, verkeersdrempels, etc.

De obstakelcorrectie is (vanwege de gewenste eenvoudigheid) in standaardrekenmethode 1 weergegeven met één formule waarin het verschillend gedrag van de voertuigcategorieën verwerkt is. De resultaten die worden bepaald op basis van deze formule benaderen de correcties zoals die beschreven zijn voor de standaardrekenmethode 2. De correctie wordt per rijlijn bepaald.

De met de gegeven formules te berekenen toeslagen, geven de toeslag op het geluidsniveau weer ten opzichte van een situatie waar het verkeer met een constante snelheid van 50 km/h rijdt.

Als nabij een kruising het LAeq vanwege het totale verkeer op de kruisende wegen moet worden bepaald, wordt eerst het LAeq voor elke weg afzonderlijk berekend. In de gevallen waarin daarbij vanuit het waarneempunt door bebouwing een beperkt zicht op de zijweg bestaat, heeft de rekenmethode niet meer dan een indicatieve waarde, doordat het LAeq vanwege de zijweg wordt overschat.

8.3. Standaardrekenmethode 2

[Regeling vervallen per 01-01-2024]

8.3.1. Algemeen

[Regeling vervallen per 01-01-2024]

Het toepassingsgebied van de standaardrekenmethode 2 is ruimer dan die van de standaardrekenmethode 1 en de standaardmeetmethode als gegeven in resp. de hoofdstukken 1 en 3.

Omdat het onmogelijk is om in deze regeling een methode te geven die in alle mogelijke gevallen toepasbaar is, wordt per onderdeel van de rekenmethode aangegeven onder welke omstandigheden nader onderzoek op dat onderdeel noodzakelijk is.

8.3.2. De hoofdformule

[Regeling vervallen per 01-01-2024]

De gegeven formules 2.1 en 2.2 zijn afgeleid uit de definitie van het equivalente geluidsniveau LAeq die volgens NEN-ISO 1996-1:2003 luidt:

Bijlage 268980.png

waarin t1 en t2 respectievelijk de begin- en eindtijd zijn van een gespecificeerd tijdinterval in seconden, pA(t) de momentane A-gewogen geluidsdruk (in Pa) en po de referentiegeluidsdruk van 20 μPa is.

De totale openingshoek van het waarneempunt kan twee waarden hebben, te weten:

  • a. 180° indien LAeq dient ten behoeve van de vaststelling van de geluidsbelasting van een gevel, of

  • b. 360° indien het LAeq dient ten behoeve van de vaststelling van de geluidsbelasting op een terrein behorende bij een geluidsgevoelig object als bedoeld in artikel 1.2 van het Besluit geluidhinder.

8.3.3. Reflecties

[Regeling vervallen per 01-01-2024]

Bij oneffenheden van het reflecterende oppervlak moet bij gevels worden gedacht aan balkons, galerijen, trappenhuizen en dergelijke. Als het bron- of waarneempunt zich op korte afstand hiervan bevindt, kan het verstrooiend effect van de oneffenheden leiden tot geluidsniveaus die niet overeenkomen met de uitkomsten van deze rekenmethode. Een nader onderzoek, bijvoorbeeld praktijk- of schaalmodelmetingen, kan hierin uitkomst brengen. Als het waarneempunt zich op de gevel bevindt (dit is het geval wanneer de geluidsbelasting van de gevel moet worden vastgesteld), is bovenstaande uiteraard niet van toepassing op het waarneempunt.

In feite wordt het oppervlak van een object per sector benaderd door een plat vlak. Als deze benadering geen goede beschrijving van de werkelijke situatie is, kan in veel gevallen het verdelen van het oppervlak over meerdere sectoren met een kleinere openingshoek de oplossing zijn. Is dit niet het geval dan is nader onderzoek vereist, bijvoorbeeld in de vorm van praktijk- of schaalmodelmetingen.

8.3.4. Emissieterm LE

[Regeling vervallen per 01-01-2024]

De emissiegetallen voor lichte motorvoertuigen zijn aangepast ten opzichte van de emissiegetallen in het Reken- en meetvoorschrift geluidhinder 2006. De actualisatie is gebeurd op basis van emissiemetingen in 2009 en 2010.

Er is een logaritmisch verband aangenomen tussen het bronvermogen en de snelheid, dat naar onderen extrapoleerbaar is tot 30 km/h en naar boven tot 110 km/h in geval van de middelzware en zware motorvoertuigen en tot 160 km/h in geval van lichte motorvoertuigen.

8.3.5. De optrektoeslag ΔLOP

[Regeling vervallen per 01-01-2024]

Dat in de omgeving van kruispunten en andere punten waar sprake is van afremmen en optrekken een andere geluidsbelasting wordt gevonden dan bij vrij doorstromend verkeer, is voornamelijk een gevolg van een toenemende geluidsemissie bij het accelereren van de individuele voertuigen. Op grond hiervan zou dus eigenlijk sectorgewijs een optrektoeslag bij de emissieterm LE (§ 2.4) moeten worden opgeteld. Een goed rekenmodel ter bepaling van deze optrektoeslag vereist echter zoveel – vaak niet voorhanden zijnde – invoergegevens, dat hier is gekozen voor een sterk geschematiseerd model.

Door de in formule 2.2 gekozen rekenwijze te volgen moet in iedere sector en iedere octaafband een optrektoeslag in rekening worden gebracht. De optrekcorrectie is afhankelijk van de voertuigcategorie.

De optrekcorrectie ΔLOP brengt het effect in rekening van afremmend en optrekkend verkeer nabij kruisingen van wegen en het effect van snelheidsbeperkende obstakels zoals minirotondes, verkeersdrempels, etc.

De met de gegeven formules te berekenen toeslagen, geven de toeslag op het geluidsniveau weer ten opzichte van een situatie waar het verkeer met een constante snelheid van 50 km/h rijdt.

8.3.6. De kruispunttoeslag ΔLkruispunt

[Regeling vervallen per 01-01-2024]

In figuur 6.2 wordt aan de hand van een voorbeeld toegelicht hoe de afstand a wordt bepaald in het geval van een kruispunt. Bij de berekening zijn slechts de afstand a van het waarneempunt tot de rand van het kruispunt en het type kruispunt van belang.

Bijlage 250373.png
Figuur 6.2 Twee voorbeelden van de bepaling van de afstand a. In de punten W wordt het LAeq vanwege de geschetste rijlijnen berekend.

8.3.7. De bodemdemping ΔLB

[Regeling vervallen per 01-01-2024]

Het absorberende effect van geluidabsorberende wegdektypen op de overdracht wordt in de berekeningen meegenomen. Dit is relevant voor brede wegverhardingen, zoals meerstrooks auto(snel) wegen. Omdat de methode voor bepaling van de wegdekcorrectie (ook) rekening houdt met de absorberende eigenschappen van het wegdek, wordt het weggedeelte onder de rijlijn als akoestisch hard gemodelleerd.

Voor de bepaling van de absorptie in het brongebied is de methode aangepast ten opzichte van het Reken- en meetvoorschrift geluidhinder 2006. Er is gekozen voor een oplossingsrichting onafhankelijk van de ligging van hard/zacht overgangen of de begrenzing van bodemvlakken. Er is een vaste strook hard bodemgebied onder de rijlijn gedefinieerd, waardoor het eerste deel van de geluidsoverdracht altijd over een reflecterende bodem plaatsvindt. De lengte van dit gedeelte is voor elke sector verschillend. De lengte X is proportioneel gemaakt ten opzichte van lengte Y, via de formulering X/sin(θ).

De gekozen aanpak (met een vaste afstand van 5 meter loodrecht op de rijlijn met akoestisch harde bodem) wordt alleen gebruikt als er onder een bronpunt een significant absorberend wegdektype aanwezig is (ZOAB, (Fijn) tweelaags ZOAB). Voor de overige situaties wijzigt de methode voor het bepalen van de gemiddelde absorptiefractie niet. Het vlak onder het bronpunt (dat gemodelleerd is op basis van de werkelijke grenzen van het wegdek) heeft een absorptiefractie van 0.

8.3.8. De schermwerking ΔLSW

[Regeling vervallen per 01-01-2024]

In paragraaf 2.10 is de mogelijkheid opgenomen om rekening te houden met het (positieve) effect van een zogenaamde schermtop op de schermwerking. Dit effect is met een aparte term in de formule voor de bepaling van de schermwerking beschreven. Omdat er strikt genomen overlap bestaat tussen deze correctieterm (CT) en de profielafhankelijke correctieterm (CP) wordt in Tabel 2.8 bepaald dat de laatste term 0 is als gebruikt gemaakt wordt van de correctie voor een schermtop.

De rekenregel om de waarde van deze correctieterm te kunnen bepalen is opgenomen in hoofdstuk 5 van deze bijlage. Deze rekenregel is toepasbaar voor alle gangbare schermtypen, waarbij in het geval van reflecterende schermen gewerkt wordt met een spiegelbron.

Van Tabel 2.8 afwijkende profielen zijn onder andere overhuivingen, gehele of gedeeltelijke overkappingen, wegen in ingravingen met een tophoek tussen de 165° en 180°.

Wanneer een weg aan beide zijden wordt voorzien van een (hoog) reflecterend geluidsscherm, ontstaat door reflectie en interferentie in de ingesloten ruimte een zeer complex geluidsveld, waardoor de met het afschermingsmodel berekende geluidsniveaus met name op waarneempunten gelegen in de buurt van de zichtlijnen van het scherm, niet altijd voldoende betrouwbaar kunnen zijn. Dit geldt ook voor specifieke schermconstructies, zoals luifels en overkappingen. Als de situatie daartoe aanleiding geeft, kan met meerdere reflecties gerekend worden. In dergelijke gevallen kan nader onderzoek met meer geavanceerde modellen nodig zijn.

8.3.9. Absorptie van objecten

[Regeling vervallen per 01-01-2024]

Bij reflectie op een geluidsabsorberend scherm kan de frequentieafhankelijke absorptieterm α (in paragraaf 2.11) worden afgeleid uit een door de fabrikant van de betreffende constructie te verstrekken absorptiespectrum. De bepaling van een dergelijk absorptiespectrum moet hebben plaatsgevonden in een onafhankelijk, gespecialiseerd laboratorium en volgens een aangegeven verifieerbare methode.

8.4. Standaardmeetmethode

[Regeling vervallen per 01-01-2024]

Een meting van het equivalente geluidsniveau van wegverkeer kan slechts zelden plaatsvinden bij de maatgevende verkeersintensiteiten. Een geluidsmeting dient daarom altijd samen te gaan met een telling van het verkeer, dat behoort tot de in artikel 1.1, tweede lid, van deze bijlage genoemde voertuigcategorieën. Indien naast deze categorieën het in rekening brengen van bromfietsen, motorfietsen of trams noodzakelijk wordt geacht, worden deze categorieën ook geteld. Met behulp van de term ΔE wordt dan het gemeten equivalente geluidsniveau genormeerd naar het equivalente geluidsniveau bij de maatgevende verkeersintensiteiten.

Aangezien het meettechnisch gezien beter is om te meten bij meewindcondities, is een meteocorrectie (de term Cm) nodig om tot het equivalente geluidsniveau LAeq voor meteorologisch gemiddelde omstandigheden te komen.

Het genoemde minimum aantal voertuigen dat tijdens een meting moet passeren, is vereist om te kunnen spreken van een statistisch verantwoorde steekproef uit de betreffende voertuigcategorie. Bij dit minimum aantal voertuigen moet bedacht worden dat de verdeling over de verschillende voertuigcategorieën zodanig is, dat de normering met de term ΔE statistisch voldoende betrouwbaar is. Dit betekent in het algemeen dat het minimum aantal gemeten (middel)zware motorvoertuigen ten minste gelijk moet zijn aan 100 x de fractie van de (middel)zware motorvoertuigen in de maatgevende periode.

Bij de meteorologische randvoorwaarden is geen waarde aangegeven voor de maximale windsnelheid, maar is bepaald dat het windgeruis minder dan 10 dB(A) onder het te meten geluidsniveau moet liggen. Hiermee wordt voldaan aan de algemene eis dat stoorgeluiden het meetresultaat niet zodanig mogen beïnvloeden dat een afwijking van 0,5 dB(A) of meer optreedt.

8.5. Methode bepaling wegdekcorrectie

[Regeling vervallen per 01-01-2024]

De wegdekcorrectie is de in dB(A) of in dB(A) per octaafband uitgedrukte toename van de geluidsemissie ten opzichte van dicht asfaltbeton. In dit geactualiseerde voorschrift is de methode voor de bepaling van de wegdekcorrectie ingrijpend gewijzigd. De achtergrond daarvoor is het inzicht dat in het afgelopen decennium is opgedaan, dat de geluideigenschappen van de meeste wegdektypen gedurende de gebruiksperiode zich significant anders ontwikkelen dan die van dicht asfaltbeton (de referentie). Met de introductie van een verouderingscorrectie (Ctijd) kunnen de effecten van wegdektypen op het equivalente geluidniveau nauwkeurig bij de berekeningen meegenomen worden. De in dit voorschrift beschreven wegdekcorrectie kan gezien worden als de beste schatting van de gemiddelde geluideigenschappen van een wegdektype gedurende de gehele gebruiksperiode. Daarnaast is in de methode het effect van recente emissiemetingen op de referentie verwerkt, waardoor zowel de emissie als de wegdekcorrectie gebaseerd is op de resultaten van dezelfde meetcampagne.

Deze benadering van het meenemen van de invloed van het wegdek impliceert dat evenals dit het geval is voor verkeersintensiteit, verkeerssamenstelling en verkeerssnelheid, ook de wegdekcorrectie door en onder verantwoordelijkheid van de wegbeheerder moet worden aangeleverd bij de voor het akoestisch onderzoek aangewezen instantie. De reden voor deze expliciete nadruk op de rol van de wegbeheerder is de volgende. De akoestische kwaliteit van een wegdek wordt geheel bepaald door het ontwerp, de uitvoering en het onderhoud ervan. Voor deze civieltechnische aspecten draagt de beheerder geheel de verantwoordelijkheid zodat hij de aan het wegdek te relateren bijdrage in de geluidsemissie (de wegdekcorrectie) volledig kan beheersen. Ook de nog steeds voortgaande ontwikkelingen op het gebied van geluidsreducerende wegdekverhardingen dragen bij tot de gewijzigde benaderingswijze.

Hoofdstuk 4 beschrijft de methode om de wegdekcorrectie te bepalen. Concrete wegdekcorrectiefactoren zijn niet in dit voorschrift opgenomen. Gegevens over standaard wegdektypen, zoals ZOAB en tweelaags ZOAB, en de wegdekcorrectiefactoren van standaard wegdektypen en producten van producenten zijn te vinden op de website www.stillerverkeer.nl. Op deze website zijn ook de waarden van de verouderingscorrectie van de standaard wegdektypen beschikbaar.

8.6. Rekenregel middenbermscherm

[Regeling vervallen per 01-01-2024]

Algemeen

Met de methode uit hoofdstuk 2 van deze bijlage is altijd het effect van een scherm te bepalen. Als er meerdere diffractieranden zijn, zal het effect van de meest bepalend diffractierand in rekening worden gebracht. Het effect van een dubbele diffractie wordt op deze manier niet verdisconteerd. Met behulp van methoden uit HARMONOISE zijn de effecten van dubbele diffractieranden bepaald en vervolgens geverifieerd met BEM-PE rekenmodellen. De uitkomsten bleken goed overeen te komen.

Omdat het effect niet zondermeer toepasbaar is in de Meakawa-formules is gekozen om het effect van een middenbermscherm op de volgende wijze in rekening te brengen. Per rijlijn wordt het effect bepaald van het scherm in de zijberm of een ander afschermend object naast de weg. Voor de rijlijnen die tussen een geluidscherm in de middenberm en het en het afschermende object naast de weg zijn gesitueerd, wordt ook de reflectie tegen het middenbermscherm in rekening gebracht. Voor de rijlijnen die, gezien vanuit het afschermende object naast de weg, achter het middenbermscherm liggen wordt een octaafbandafhankelijke correctie toegepast Cmbs op de schermwerking van het object naast de weg.

Cmbs wordt voor iedere bron, per sector en per octaafband bepaald. De toetsing of een afschermend object in de middenberm voldoet aan de voorwaarden zoals in hoofdstuk 6 wordt beschreven, wordt eveneens per bron-waarneempunt-pad uitgevoerd.

Onderscheiden gebieden

Er wordt een drietal gebieden onderscheiden. De schermwerking van het middenbermscherm in gebied A wordt met de bestaande formules van hoofdstuk 2 berekend, met uitzondering van de correctie voor een schermtop en de profielafhankelijke correctie. Voor gebied B is de schermwerking afhankelijk van de hoek tussen de lijnen over beide schermen en de situatie van de lijn van bron naar waarnemer. Voor gebied C geldt een constante waarde die mede afhankelijk is van de van de hoek tussen de lijnen over beide schermen.

8.7. Rekenregel diffractor

[Regeling vervallen per 01-01-2024]

8.7.1. Algemeen

[Regeling vervallen per 01-01-2024]

Een diffractor is een nieuw type overdrachtsmaatregel dat op een andere manier werkt dan een geluidscherm. Er zijn twee typen diffractoren opgenomen in het rekenvoorschrift. Een type diffractor bedoeld om direct langs een weg ingegraven te worden in het maaiveld, waarbij de diffractor niet boven de weg uitsteekt, en een ander type diffractor wordt toegepast als schermtop boven op een geluidscherm. Op basis van metingen en numerieke berekeningen (Finite element method – parabolic equation, FEM-PE) is het effect van de diffractor op korte en lange afstand bepaald. Aan de hand van deze resultaten is een rekenregel opgesteld die geschikt is binnen het toepassingsgebied van standaard rekenmethode II.

8.7.2. Ingegraven diffractor langs een weg

[Regeling vervallen per 01-01-2024]

Op basis van de schermwerkingsformules uit hoofdstuk 2 wordt een schaduwzone berekend waarbinnen de diffractor effect heeft. Daarbij kan een ingegraven diffractor een aanvullend effect geven ten opzichte van alleen een scherm mits de top van het maatgevend scherm zich in de schaduwzone bevindt.

Ten opzichte van de eerste implementatie in het Reken- en meetvoorschrift geluid 2012 is de methode iets gewijzigd. Het gebied waar een diffractor effect heeft is iets groter geworden. De schaduwzone is nu met maximaal 2 m opgehoogd. De aanleiding is dat op relatief korte afstand (ca 20 m uit de bron) de schaduwzone erg laag was. Om meer overeenstemming te krijgen met metingen is de schaduwzone hier opgehoogd. Voor 1.000 Hz en lager is de schaduwzone lineair met 2 m opgehoogd tussen de 5 en 20 m uit de bron. Voor 2.000 Hz en hoger gaat dat lineair tussen de 5 en 35 m uit de bron.

Het totale effect van de diffractor is afhankelijk van de afstand van het bronpunt tot de diffractor en van de absorptiefractie van de bodem vlak voor en na de diffractor. Het diffractoreffect wordt voor iedere bron, per sector en per octaafband bepaald.

De rekenregel voorziet in een methode om de akoestische eigenschappen van de diffractor vast te stellen met geluidoverdrachtmetingen. Deze ingemeten eigenschappen worden gebruikt in de formules van de rekenregel. De meetmethode maakt gebruikt van een kunstmatige bron waarbij een vergelijking wordt gemaakt tussen een afgedekte diffractor om een harde bodem te simuleren en een niet afgedekte diffractor. Om te controleren of de afdekking geschikt is en of er geen andere neveneffecten worden gemeten wordt eerst de meetopstelling van de afgedekte diffractor vergeleken met een volledig harde, vlakke bodem. Uiteindelijk wordt per 1/3 octaafband een diffractoreffect gemeten. Omdat het rekenvoorschrift uitgaat van emissie en overdracht in octaafbanden worden deze 1/3 octaafband waarden omgerekend naar hele octaafbanden. Hierbij wordt rekening gehouden met het standaard geluidspectrum voor wegverkeer uit NEN-EN 1793-3.

8.7.3. Diffractor op een geluidscherm

[Regeling vervallen per 01-01-2024]

Uit de FEM-PE sommen bleek een relatie te liggen tussen het extra effect van de diffractor en het Fresnelgetal (Nf). De relatie is onderzocht door verschillende typen diffractoren, die op verschillende frequenties waren afgesteld, te toetsen. Deze relatie bleek nauwelijks af te hangen van de octaafband, wel was er een verschil als er een versterking of een verzwakking optreedt vanwege de diffractor.

Voor wegverkeer is in de FEM-PE berekeningen uitgegaan van een bronhoogte van 10 cm. Dit is in de rekenregel verwerkt door bij de bepaling van het Fresnelgetal (alleen voor het diffractoreffect en niet voor de schermwerking zelf) de hoogte van het diffractiepunt op te hogen met 65 cm. Met deze ophoging wordt een goede overeenstemming bereikt met metingen vlak achter een scherm en met de resultaten uit FEM-PE op grotere afstand.

Bij het toepassen van een diffractor effect op een scherm wordt geen profielcorrectieterm of effect T-top in rekening gebracht. Het toepassingsbereik van de methode bij een diffractor op scherm beperkt zich tot schermen waarvan de profielcorrectie Cp gelijk is aan 0 in de situatie dat op dat object de diffractor zelf niet zou zijn toegepast.

De rekenregel voor de diffractor heeft alleen invloed op het gebied waar tevens sprake is van normale afscherming door de combinatie van diffractor en geluidscherm. Uit onderzoek blijkt dat het naar boven afbuigen van het geluid tot verwaarloosbaar kleine toenames van geluidniveaus leidt. Dit effect is dan ook niet meegenomen in rekenregel. Wel kan een diffractor voor sommige frequentiebanden tot een verminderde schermwerking leiden. Deze verminderde schermwerking is wel meegenomen in de rekenregel. Of er sprake is van dit effect blijkt uit de metingen van de producteigenschappen van de diffractor.

Het rekenvoorschrift stelt dat de omweg berekend moet worden ter hoogte van het diffractiepunt. Dit diffractiepunt kan beschouwd worden als dat punt in de constructie waar de omweg (de berekende fresnelgetal) het grootst is. De rekenregel is verder gevalideerd op horizontaal geplaatste diffractoren. Indien een diffractor op scherm onder een hoek geplaatst wordt is nader onderzoek naar het effect noodzakelijk.

Naast een rekenregel is tevens een meetmethode voor het bepalen van het diffractoreffect vastgelegd. Als basis voor deze meetmethode wordt NEN-EN 1793-4 gebruikt. Er is wel gebleken dat er ten opzichte van deze methode een kleine aanpassing noodzakelijk was. De norm gaat uit van een energetische middeling van het diffractoreffect van alle meetposities. Het blijkt dat de bovenste meetposities ertoe leiden dat er een relatief klein diffractor effect wordt gemeten waardoor de relatie met het Fresnelgetal niet goed te leggen is. Met een lineaire middeling over de meetpunten is er wel een goede relatie.

8.8. Lijst van definities

[Regeling vervallen per 01-01-2024]

symbool

eenheid

omschrijving

paragraaf

α

geluidsabsorptiecoëfficiënt van het object in de betreffende octaafband

2.11

α

dB(A)

emissiekental

2.4

Ai,diff

dB

De producteigenschap van de ingegraven diffractor voor octaafbandindex i

7.2

Ai,S,diff

dB

De producteigenschap van een diffractor op een geluidscherm voor octaafbandindex i

7.3

β

dB(A)

emissiekental

2.4

δlucht

dB/m

de luchtdempingscoefficiënt

2.7

δrefl

dB(A)

de niveaureductie ten gevolge van één reflectie

2.11

ε

m

akoestische omweg

2.10

σm

dB(A)

verschil bij referentiesnelheid v0

1.5; 4.5

σm,i

dB(A)

verschil voor een oktaafband bij de referentiesnelheid v0

2.4; 4.5

Φ

°

de openingshoek van de sector

2.6

Φ

°

de gemiddelde hoek tussen de gemiddelde windrichting tijdens de meting en de kortste verbindingslijn tussen het waarneempunt en de weg

3.3

Θ

°

de hoek die het sectorvlak maakt met het rijlijnsegment

2.6

γ

functies die gebruikt worden om de bodemdemping te berekenen

2.8

a

m

de afstand van het waarneempunt tot het midden van het obstakel

1.6; 2.5

B

de bodemfactor

1.9

Bb

de absorptiefractie van het brongebied

2.8

Bm

de absorptiefractie van het middengebied

2.8

Bw

de absorptiefractie van het waarneemgebied

2.8

bm

dB(A)

snelheidsindex per decade snelheidstoename

1.5; 2.4; 5.1

CH

dB(A)

de hellingscorrectie

2.4

Ckruispunt

dB(A)

de correctie vanwege een kruispunt

1.6

CM

dB(A)

de meteocorrectieterm

2.2; 2.9; 3.1

Cobstakel

dB(A)

de correctie vanwege een situatie die de gemiddelde snelheid sterk beperkt

1.6

Coptrek

dB(A)

correctieterm in verband met eventuele met verkeerslichten geregelde kruisingen van wegen, of in verband met obstakels in de weg die de gemiddelde snelheid sterk verlagen

1.4; 1.6

Cp

dB(A)

de profielafhankelijke correctieterm

2.10

CS,diff

dB

Correctieterm voor een diffractor op een geluidsscherm

2.10, 7.3

Creflectie

dB(A)

correctieterm in verband met eventuele reflecties tegen bebouwing of andere verticale vlakken

1.4; 1.7

CT

dB(A)

correctieterm vanwege een schermtop

2.10; 6.1; 6.2

Ctemp,licht

dB(A)

temperatuurcorrectie voor lichte motorvoertuigen

5.4

Ctemp,zwaar

dB(A)

temperatuurcorrectie voor (middel)zware motorvoertuigen

5.4

Cwegdek

dB(A)

de wegdekcorrectie

1.5; 2.4; 5.1; 5.3

95%c.i.

dB(A)

95%-confidentie-interval van een SPB-meting

5.4

Dafstand

dB(A)

term die de verzwakking als gevolg van de afstand in rekening brengt

1.4; 1.8

Dbodem

dB(A)

term die de verzwakking als gevolg van het bodemeffect in rekening brengt

1.4; 1.9

DIj,k,b,h,t

dB

Diffractie index voor 1/3 octaafband j, meetpositie k, hoek h en hoogte bron b.

7.3

DIj

dB

Diffractie index van een diffractor op een geluidscherm voor 1/3 octaafband j

7.3

Dlucht

dB(A)

term die de verzwakking als gevolg van luchtdemping in rekening brengt

1.4; 1.9

DLR

dB(A)

niveaureductie door geluidsisolatie

6.1

DLα

dB(A)

niveaureductie door geluidsabsorptie

6.1

Dmeteo

dB(A)

term die het verschil tussen de meteorologisch gemiddelde geluidsoverdracht en de als referentie genomen meewindsituatie in rekening brengt

1.4

d

m

horizontale afstand tussen waarneempunt en rijlijn

1.1

dd

m

de totale breedte van de diffractor

7.2

dC

m

verticale afstand tussen de kromme C en de ontvanger

6.2

dr

m

horizontale afstand van reflectievlak tot de dichtst bij de waarneempunt gelegen rijlijn

1.7

dw

m

horizontale afstand tot de meest nabij gelegen rijlijn

1.7

E

 

emissiegetal

1.4; 1.5

ΔE

dB(A)

verschil in de geluidsemissie tussen de maatgevende verkeerssituatie en de tijdens de meting optredende verkeerssituatie

3.1

Elv

dB(A)

emissiegetal van lichte motorvoertuigen

1.5

Emaatg

dB(A)

het emissiegetal uitgaande van de maatgevende verkeersintensiteiten en -snelheden

3.1

Emeting

dB(A)

het emissiegetal uitgaande van de verkeersintensiteiten en -snelheden optredende tijdens de meetperiode

3.1

Emv

dB(A)

emissiegetal van middelzware motorvoertuigen

1.5

Ezv

dB(A)

emissiegetal van zware motorvoertuigen

1.5

fobj

objectfractie

1.7

H

de effectiviteit van het scherm

2.10

hb

m

de hoogte van het bronpunt boven de gemiddelde maaiveldhoogte in het brongebied

2.8; 2.9; 2.10; 3.1; 3.3; 3.5

he

m

de effectieve schermhoogte

2.10

hT

m

de hoogte van de top van de afscherming t.o.v. het plaatselijke maaiveld

2.10

hw

m

de hoogte van het waarneempunten boven de gemiddelde maaiveldhoogte in het waarneemgebied

1.1;1.9; 2.8; 2.9; 2.10; 3.1; 3.3; 3.5

hweg

m

hoogte van wegdek t.o.v. maaiveld

1.1; 1.9

i

octaafbandindex

2.4; 2.10; 2.12

j

aanduiding van een sector

2.2; 2.12

K

het snijpunt van het scherm met de zichtlijn

2.10

L

het snijpunt van het scherm met een gekromde geluidsstraal die onder meewindcondities van bron- naar waarneempunt loopt

2.10

lv

categorie lichte motorvoertuigen

art. 3.1

LAeq

dB(A)

het equivalente geluidsniveau

1.1; 1.4; 2.2; 2.3; 3.1; 3.2

L’Aeq

dB(A)

het gemeten equivalente geluidsniveau

3.1; 3.4

LAeq,i

dB(A)

LAeq vanwege de i-de rijlijn

1.4; 3.5

LA,max

dB(A)

maximale A-gewogen geluidsniveau

5.4

ΔLB

dB(A)

de bodemdemping

2.2; 2.8

LE

dB(A)

de emissieterm

2.2; 2.4

Leq,i

dB(A)

het A-gewogen equivalente geluidsniveau in octaafband i

2.12

Leq,i,j,n,m

dB(A)

bijdrage aan het LAeq in 1 octaaf, van 1 sector, van 1 bronpunt en van 1 voertuigcategorie

2.2

ΔLGU

dB(A)

de geometrische uitbreidingsterm

2.2; 2.6

ΔLkruispunt,m

dB(A)

de toeslag vanwege een kruispunt

2.5

ΔLL

dB(A)

de luchtdemping

2.2; 2.7

ΔLobstakel,m

dB(A)

de toeslag vanwege een situatie die de gemiddelde snelheid sterk beperkt

2.5

ΔLOP

dB(A)

de optrektoeslag

2.2; 2.5

ΔLSW

dB(A)

de schermwerking

2.2; 2.10

ΔLR

dB(A)

de niveaureductie t.g.v. reflecties

2.2; 2.11

l1 en l2

begrenzingslijnen

1.1

m

voertuigcategorie

1.5; 2.2; 2.4

mv

categorie middelzware motorvoertuigen

art. 3.1

N

het aantal rijlijnen

1.4

N

het aantal metingen dat in een bepaalde situatie is vereist

3.5

N

het aantal bronpunten

2.2

Nf

het fresnelgetal

2.10

Nrefl

het aantal reflecties tussen bron- en waarneempunt

2.11

n

bronpunt

2.2; 2.12

n

aantal gemeten voertuigen

5.4

p

%

de som van het percentage mz en zv

1.6

ph

%

het hellingspercentage van het betreffende wegvak

2.4

Q

h‑1

de gemiddelde intensiteit van de betreffende voertuigcategorie

1.5; 2.4

q

het type kruispunt

2.5

R0

m

de afstand tussen bron- en waarneempunt, gemeten langs de kortste verbindingslijn

2.6; 2.7; 2.10

R

m

de horizontaal gemeten afstand tussen bron- en waarneempunt

2.8; 2.9; 2.10; 3.1; 3.3

RB

m

de horizontaal gemeten afstand tussen de bron en het geluidsscherm

6.2

RL

m

de som van de lengtes van de lijnstukken BL en LW

2.10

RT

m

de som van de lengtes van de lijnstukken BT en TW

2.10

Rw

m

de horizontaal gemeten afstand tussen waarneempunt en scherm

2.10; 6.2

RBL

m

de afstand tussen bron en geluidsscherm gemeten langs de kortste verbindingslijn

6.2

RWL

m

de afstand tussen geluidsscherm en waarneempunt gemeten langs de kortste verbindingslijn

6.2

r

m

de kortste afstand tussen waarneempunt en de betreffende rijlijn

1.1; 1.8; 1.9

rd:

m

de afstand van het rijlijnsegment tot het midden van de diffractor

7.2

rTW

m

de horizontale afstand tussen de rand van de schermtop (aan de bronzijde) en de ontvanger

6.2

Sb

de effectiviteit van de bodemdemping in het brongebied

2.8; 2.10

Sw

de effectiviteit van de bodemdemping in het waarneemgebied

2.8; 2.10

T

°

de tophoek van het scherm

2.10

v

km/h

de gemiddelde snelheid van de betreffende voertuigcategorie

1.5; 2.4; 3.3; 5.1

vo

km/h

de referentiesnelheid van de betreffende voertuigcategorie

1.5; 2.4; 5.1

W

waarneempunt/waarnemer

1.1; 2.10

Y

m

gedeelte van het wegdek dat in het brongebied bij bepaling van absorptiefractie altijd als akoestisch hard wordt gerekend

2.8

zv

categorie zware motorvoertuigen

art. 3.1

z0

m

de hoogte van de zichtlijn van de bron ter plaatse van het waarneempunt

6.2

zB

m

de hoogte van de bron t.o.v. het referentiepeil

2.10

zC

m

de hoogte van de kromme C ten opzichte van het referentiepeil ter plaatse van het waarneempunt

6.2

zK

m

de hoogte van punt K (snijpunt scherm en zichtlijn) t.o.v. het referentiepeil

2.10

zL

m

de hoogte van punt L (snijpunt scherm en gekromde geluidsstraal) t.o.v. het referentiepeil

2.10

zT

m

de hoogte van de top van de afscherming t.o.v. het referentiepeil

2.10; 6.2

zW

m

de hoogte van het waarneempunt t.o.v. het referentiepeil

2.10; 6.2

Bijlage IV. behorende bij hoofdstuk 4 van het Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024]

Inhoud

[Regeling vervallen per 01-01-2024]

  • 1. ALGEMEEN

    • 1.1 Begrippen

    • 1.2 Spoorvoertuigcategorieën en spoorwegconstructies

      • 1.2.1 Bestaande spoorvoertuigcategorieën en spoorwegconstructies

      • 1.2.2 Nieuwe spoorvoertuigcategorieën en spoorwegconstructies

  • 2. HET DB-EMISSIEGETAL

    • 2.1 Het emissiegetal in dB van een emissietraject

      • 2.1.1 Hoofdformule

      • 2.1.2 Gegevens

    • 2.2 Snelheden

  • 3. DE EMISSIEGETALLEN PER OCTAAFBAND

    • 3.1 Bronhoogten

    • 3.2 Bovenbouw

    • 3.3 Gegevens

    • 3.4 Berekeningswijze

    • 3.5 Emissie van betonnen en stalen kunstwerken

      • 3.5.1 Betonnen kunstwerken

      • 3.5.2 Stalen kunstwerken

    • 3.6 Snelheden

  • 4. STANDAARDREKENMETHODE 1 (SRM1)

    • 4.1 Begrippen

    • 4.2 Geometrische definiëring situatie

    • 4.3 Toepassingsbereik methode

    • 4.4 Rekenmodel

    • 4.5 Modellering van de situatie

      • 4.5.1 Bronlijn

      • 4.5.2 Reflecties

      • 4.5.3 Waarneempunten

    • 4.6 Reflectieterm

    • 4.7 Afstandsterm

    • 4.8 Luchtabsorptie

    • 4.9 Bodemeffecten

    • 4.10 Meteocorrectieterm

  • 5. STANDAARDREKENMETHODE 2 (SRM2)

    • 5.1 Begrippen

    • 5.2 De hoofdformule

    • 5.3 Modellering van de situatie

      • 5.3.1 Bronlijnen

      • 5.3.2 Bodemgesteldheid

      • 5.3.3 Hoogteverschillen in bodem

      • 5.3.4 Standaard talud

      • 5.3.5 Overwegen

      • 5.3.6 Tunnelbakken

      • 5.3.7 Geluidschermen en afschermende objecten

      • 5.3.8 Perrons

      • 5.3.9 Kunstwerken

      • 5.3.10 Geluidabsorberende uitvoering

      • 5.3.11 Reflecties

      • 5.3.12 Woningen en waarneempunten

    • 5.4 De geometrische uitbreidingsterm ΔLgu

    • 5.5 De overdrachtsverzwakking ΔLod

      • 5.5.1 De luchtdemping DL

      • 5.5.2 De bodemdemping DB

      • 5.5.3 De meteocorrectieterm CM

    • 5.6 De schermwerking ΔLsw

    • 5.7 Bepaling spoorspecifieke absorptie

    • 5.8 Bepaling spoorspecifieke geluidisolatie

    • 5.9 De niveaureductie ten gevolge van reflecties LR

    • 5.10 Het octaafbandspectrum van het equivalente geluidniveau

  • 6. MEETMETHODEN

    • 6.1 Bepaling overdrachtsverzwakking

    • 6.2 Methode voor meting en modellering van stalen kunstwerken

      • 6.2.1 Inleiding

      • 6.2.2 Geluidemissietoeslag

      • 6.2.3 Splitsing in rolgeluidtoename en kunstwerkgeluid

      • 6.2.4 Meettechnische bepaling van de geluidemissietoeslag

      • 6.2.5 Modellering in SRM2

    • 6.3 Methode in bijzondere omstandigheden

    • 6.4 Apparatuur

    • 6.5 Meteorologische randvoorwaarden

    • 6.6 De meetplaats

  • 6.A REKEN- EN MEETREGEL DIFFRACTOR

    • 6.A Inleiding

    • 6A.2 Rekenregel CS,diff

    • 6A.3 Meettechnische bepaling producteigenschappen van een diffractor op scherm

      • 6A.3.1 Meetmethode

      • 6A.3.2 Akoestisch rapport

  • 7. EMISSIEREGISTER

  • 8. TOELICHTING REKEN- EN MEETVOORSCHRIFT

    • 8.1 Algemeen

    • 8.2 Begrippen

    • 8.3 Spoorvoertuigcategorieën

    • 8.4 Emissiegetallen (als bedoeld in hoofdstuk 2 en 3)

      • 8.4.1 Effect van spoorstaafruwheidsbeheersing

      • 8.4.2 Toeslag voor kunstwerken

    • 8.5 Standaardrekenmethode 1 (als bedoeld in hoofdstuk 4)

    • 8.6 Standaardrekenmethode 2 (als bedoeld in hoofdstuk 5)

    • 8.7 Meetmethode (als bedoeld in hoofdstuk 6)

    • 8.7.A Meet- en rekenregel diffractor (als bedoeld in hoofdstuk 6A)

    • 8.8 Gebruik emissieregister (als bedoeld in hoofdstuk 7)

1. Algemeen

[Regeling vervallen per 01-01-2024]

1.1. Begrippen

[Regeling vervallen per 01-01-2024]

In deze bijlage wordt verstaan onder:

  • etmaalperiode: gedeelte van een etmaal, waarover het equivalent geluidsniveau wordt bepaald;

  • rekeneenheid: locomotief, treinstel, rijtuig of wagen, indien deze deel uitmaakt van het spoorvoertuigtype;

  • snelheid: de voor het betreffende emissietraject, per etmaalperiode, representatief te achten snelheid per spoorvoertuigtype;

  • verkeersintensiteit: het aantal rekeneenheden van een spoorvoertuigtype dat jaarlijks per uur, gemiddeld over een etmaalperiode, op een bepaald emissietraject passeert.

1.2. Spoorvoertuigcategorieën en spoorwegconstructies

[Regeling vervallen per 01-01-2024]

1.2.1. Bestaande spoorvoertuigcategorieën en spoorwegconstructies

[Regeling vervallen per 01-01-2024]

Alle spoorvoertuigtypen worden ingedeeld in een spoorvoertuigcategorie.

De spoorvoertuigentypen die op de Nederlandse spoorweginfrastructuur rijden, zijn ingedeeld in de in onderstaande tabel opgenomen twaalf spoorvoertuigcategorieën. De indeling is vooral gebaseerd op verschillen in type aandrijving en wielremsysteem.

De in deze bijlage gehanteerde emissie is gekoppeld aan een rekeneenheid van een spoorvoertuigcategorie. De onderstaande tabel geeft het aantal rekeneenheden van een bepaalde samenstelling van een spoorvoertuig aan. In het algemeen valt een rekeneenheid samen met een locomotief of spoorwegrijtuig. Voor verschillende spoorvoertuigen is dat niet het geval. In het geval van hogesnelheidsmaterieel wordt een totale trein opgevat als één rekeneenheid.

Cat

Type

Tekening

Getoond aantal rekeneenheden

Getoonde lengte

1

Spoorvoertuigcategorie 1: blokgeremd reizigersmaterieel:

– elektrisch reizigersmaterieel met uitsluitend gietijzeren blokremmen met de bijbehorende locomotieven: treinstellen van Materieel '64.

   

Mat’64

Bijlage 265251.png

2

52 m

2

Spoorvoertuigcategorie 2: schijf+blokgeremd reizigersmaterieel

– elektrisch reizigersmaterieel met voornamelijk schijfremmen en toegevoegde gietijzeren blokremmen: het intercitymaterieel van het type ICM III, ICR en DDM-1.

   

ICM III

Bijlage 265252.png

ICM-III met blokremmen.

Heeft 3 rekeneenheden per treinstel.

2

54 m

ICR

Bijlage 265253.png

Met toegevoegde gietijzeren blokkenrem.

2

53 m

ICR (BNL)

Bijlage 265254.png

Met toegevoegde gietijzeren blokkenrem.

2

53 m

DDM-1

Bijlage 265255.png

Heeft toegevoegde blokkenrem. Uiterlijk vrijwel gelijk aan de DDM-2/3 die in categorie 8 is ingedeeld. Altijd met locomotief.

2

52 m

3

Spoorvoertuigcategorie 3: schijf+blokgeremd elektrisch materieel:

– elektrisch reizigersmaterieel met uitsluitend schijfremmen en met motorgeluid: het stadsgewestelijk materieel (SGM-II/III);

– elektrische locomotieven, zoals de series 1600, 1700 en 1800;

– de Utrechtse sneltram (SUNIJ).

   

SGM

Bijlage 265256.png

2

52 m

SUNIJ

Bijlage 265257.png

Er zijn 2 geledingen per rekeneenheid.

1

29 m

4

Spoorvoertuigcategorie 4: goederenmaterieel met gietijzeren blokremmen:

– alle typen goederenmaterieel met gietijzeren blokremmen.

 

Goederen

Bijlage 265258.png

De categorie van goederenwagens hangt van het remsysteem af. Wagens met gietijzeren blokken vallen in categorie 4. Wagens met alternatieve (K- of LL-) blokkenrem of schijfremmen vallen in categorie 11.

Sommige goederenwagens, zoals Hiirs en Laeks, hebben geledingen. Gelede goederenwagens lijken aparte wagens, maar rijden onder slechts één wagennummer en tellen als 1 rekeneenheid.

1

1

1

1

1

Variabel

Vlootgemiddelde is cira 15 m

5

Spoorvoertuigcategorie 5: blokgeremd dieselmaterieel:

– dieselelektrisch reizigersmaterieel met uitsluitend blokremmen met de bijbehorende locomotieven: de treinstellen van het type DE-I/II/III;

– diesel-elektrische locomotieven, behalve de DE-6400.

   

6

Spoorvoertuigcategorie 6: schijfgeremd dieselmaterieel:

– dieselhydraulisch reizigersmaterieel met uitsluitend schijfremmen en met motorgeluid: de Wadloper (DH), de Buffel (DM’90)

- de dieselelektrische locomotief DE-6400

   

DM’90 Buffel

Bijlage 265259.png

2

52 m

7

Spoorvoertuigcategorie 7: schijfgeremd metro- en sneltrammaterieel:

– metro- en sneltrammaterieel van de GVB en de RET

– HSG3, RSG3- en SG3-materieel (Randstadrail)

Scharnierende geledingen met 3 of 4 draaistellen zijn 1 eenheid.

   

HSG3, RSG3 en SG3

Bijlage 265260.png

1

43 m

8

Spoorvoertuigcategorie 8: schijfgeremd reizigersmaterieel:

– elektrisch reizigersmaterieel met uitsluitend schijfremmen: de typen ICM III, ICM IV, vIRM-IV/VI, DDM-2/3, ICK, Protos;

– elektrisch reizigersmaterieel met afgeschakelde blokremmen of met toegevoegde blokkenrem met L-remblokken (aangepaste ICR);

– dieselelektrisch lightrailmaterieel: De Lint, Talent, GTW-DMU;

   
 

ICM III

Bijlage 265261.png

ICM-III met uitsluitend schijfremmen.

Heeft 3 rekeneenheden per treinstel.

2

54 m

 

ICM-IV

Bijlage 265262.png

Heeft 4 rekeneenheden per treinstel

2

54 m

 

IRM

Bijlage 265263.png

2

54 m

 

DDM-2/3

Bijlage 265264.png

Uiterlijk vrijwel gelijk aan de DDM-1 die in categorie 2 is ingedeeld. Rijdt meestal met motorbak mDDM in plaats van locomotief.

2

52 m

 

Protos

Bijlage 265265.png

2

53 m

 

ICR

Bijlage 271184.png

Met afgeschakelde blokkenrem of met toegevoegde blokkemrem met L-remblokken

2

53 m

 

ICR (BNL)

Bijlage 271185.png

Met afgeschakelde blokkenrem of met toegevoegde blokkemrem met L-remblokken

2

53 m

 

Talent

Bijlage 265266.png

2

42 m

 

GTW2/ 6-DMU

Bijlage 265267.png

2

41 m

 

GTW2/ 8-DMU

Bijlage 265268.png

3

56 m

 

Lint

Bijlage 265269.png

2

42 m

9

Spoorvoertuigcategorie 9: schijf+blokgeremd hogesnelheidsmaterieel:

– elektrisch hogesnelheidsmaterieel met voornamelijk schijfremmen en toegevoegde blokremmen op de motorwagens: de treinstellen van het type Thalys;

– elektrisch hogesnelheidsmaterieel van het type ICE-3 en Eurostar.

– elektrisch hogesnelheidsmaterieel met alleen schijfremmen van het type ICNG.

   

V250

Bijlage 265270.png

Een V250 (Albatros) bestaat uit 8 geledingen en telt als 1 rekeneenheid (201 m). Getoond zijn de eerste 2 geledingen.

0,25

52 m

ICE

Bijlage 265271.png

Een ICE bestaat uit 8 geledingen en telt als 1 rekeneenheid (201 m). Getoond zijn de eerste 2 geledingen.

0,25

51 m

Thalys (Eurostar red)

Bijlage 265272.png

Een Thalys bestaat uit 10 geledingen en telt als 1 rekeneenheid (200 m). Getoond zijn de eerste 3 geledingen.

0,30

63 m

Eurostar blue

Bijlage 265273.png

Een Eurostar blue bestaat uit 16 geledingen en telt als 2 rekeneenheden (402 m). Getoond zijn de eerste 2 geledingen

0,25

51 m

 

ICNG

Bijlage 271188.png

0,67

110 m

   
Bijlage 271189.png

Een ICNG-5 bestaat uit 5 geledingen en telt als 0,67 rekeneenheden.

Een ICNG-8 bestaat uit 8 geledingen en telt als 1 rekeneenheid. Getoond zijn de eerste 4 geledingen.

0,5

82 m

10

Spoorvoertuigcategorie 10: lightrailmaterieel:

– lightrailmaterieel van het type A32 en de Regio Citadis;

– andere typen schijf en/of magneetgeremd lightrailmaterieel met de volgende kenmerken: aslast kleiner dan 10 ton, geveerde wielen met een doorsnede kleiner dan 700 mm, afscherming van wielen en rails door lage vloer en vergelijkbare asdichtheid als A32 materieel.

– Lage vloertram met (deels) afgeschermde en afgeveerde wielen

– trams

   

A32

Bijlage 265274.png

Let op: aantal rekeneenheden ≠ aantal geledingen

2

30 m

Regio Citadis

Bijlage 265275.png

3

38 m

     

11

Spoorvoertuigcategorie 11: goederenmaterieel met alternatieve blokremmen (K- of LL-blokken):

– alle typen goederenmaterieel met alternatieve (K- of LL-) blokremmen.

Voor figuren: zie bij categorie 4.

   

12

Spoorvoertuigcategorie 12: schijfgeremd stil reizigersmaterieel:

– elektrisch reizigersmaterieel met uitsluitend schijfremmen: de typen SLT, FLIRT, GTW-EMU en SNG

   
 

SLT-S100

Bijlage 265276.png

Getoond is een half treinstel. Een heel treinstel bestaat uit 6 rekeneenheden.

3

50 m

 

SLT-S70

Bijlage 265277.png

Getoond is een half treinstel. Een heel treinstel bestaat uit 4 rekeneenheden.

2

35 m

 

FLIRT-II

Bijlage 265278.png

2

46m

 

FLIRT-III

Bijlage 265279.png

3

63m

 

FLIRT IV

Bijlage 265280.png

4

81 m

 

GTW2/ 8

Bijlage 265281.png

Aantal rekeneenheden ≠ aantal geledingen.

3

56 m

 

GTW2/ 6

Bijlage 265282.png

Aantal rekeneenheden ≠ aantal geledingen.

2

41 m

 

SNG-3

Bijlage 265283.png

3

60 m

 

SNG-4

Bijlage 265284.png

4

76 m

1.2.2. Nieuwe spoorvoertuigcategorieën en spoorwegconstructies

[Regeling vervallen per 01-01-2024]

Van de in paragraaf 1.2.1 met name genoemde spoorvoertuigtypen zijn de emissiekenmerken in het verleden vastgesteld. Deze indeling is gebaseerd op type aandrijving en remsysteem.

De emissiekenmerken van een nieuw spoorvoertuigtype of een nieuwe spoorwegconstructie worden bepaald door middel van een meting.

Bij wijzigingen aan deze spoorvoertuigtypen dan wel bij het beschikbaar komen van nieuwe spoorvoertuigtypen gelden de volgende regels:

  • 1. Als er een modificatie van een bestaand spoorvoertuigtype (met ander typenummer etc.) plaatsvindt waarbij het type aandrijving en het type remsysteem niet wijzigt: dit spoorvoertuigtype wordt in dezelfde spoorvoertuigcategorie ingedeeld als waarin het voor de modificatie was geplaatst.

  • 2. Als er een modificatie van een bestaand spoorvoertuigtype (met ander typenummer etc.) plaatsvindt waarbij het aandrijf- en/of remsysteem wel is gewijzigd: met procedure A uit de Technische Regeling Emissiemeetmethoden Railverkeer 2006 wordt getoetst of het spoorvoertuigtype kan worden ingedeeld in een bestaande categorie.

  • 3. Als toepassing van procedure A uit de Technische Regeling Emissiemeetmethoden Railverkeer 2006 niet leidt tot een indeling in een bestaande categorie: met procedure B uit de Technische Regeling Emissiemeetmethoden Railverkeer 2006 worden nieuwe emissiekentallen voor het spoorvoertuigtype vastgesteld.

Bij het bepalen van de correctieterm van een nieuw type bovenbouwconstructie wordt van procedure C uit de Technische Regeling Emissiemeetmethoden Railverkeer 2006 gebruikt.

Een andere meetmethode dan opgenomen in de Technische Regeling Emissiemeetmethoden Railverkeer 2006 is toegestaan indien aannemelijk is gemaakt dat die andere meetmethode in de betreffende situatie ten minste gelijkwaardig is aan de in de Technische Regeling Emissiemeetmethoden Railverkeer 2006 beschreven methoden.

2. Het dB-emissiegetal

[Regeling vervallen per 01-01-2024]

2.1. Het emissiegetal in dB van een emissietraject

[Regeling vervallen per 01-01-2024]

2.1.1. Hoofdformule

[Regeling vervallen per 01-01-2024]

De berekening verloopt als volgt:

Bijlage 265285.png

(2.1)

waarbij:

E nr,c = emissie voor niet-remmende voertuigen uit spoorvoertuigcategorie c,

E r,c = emissie voor remmende voertuigen uit spoorvoertuigcategorie c,

c = categorie

De emissietermen per spoorvoertuigcategorie worden bepaald uit:

Bijlage 250442.png

De waarden van de emissiekentallen ac, bc, ar,c en br,c zijn gegeven in tabel 2.1.

2.1.2. Gegevens

[Regeling vervallen per 01-01-2024]

Voor de berekening van het emissiegetal zijn de volgende gegevens nodig:

Qc: het gemiddelde aantal rekeneenheden per uur van niet-remmende spoorvoertuigen van de betreffende spoorvoertuigcategorie [h-1];

Qr,c: het gemiddelde aantal eenheden per uur van remmende spoorvoertuigen van de betreffende spoorvoertuigcategorie [h-1];

vc: de gemiddelde snelheid van de spoorvoertuigen [km h-1];

b: het type bovenbouwconstructie [–].

Spoorvoertuigen worden als remmend beschouwd als het remsysteem is ingeschakeld.

Bij de bepaling van het emissiegetal E wordt gebruik gemaakt van de in paragraaf 1.2 gegeven indeling in spoorvoertuigcategorieën, waarbij onderscheid wordt gemaakt tussen remmende en niet remmende spoorvoertuigen. Voor materieeltypes die hierin niet zijn opgenomen worden de emissiekentallen bepaald op grond van meetresultaten volgens TR (procedure A) of TR (procedure B).

Tevens worden de volgende typen bovenbouwconstructies onderscheiden:

  • baan op betonnen mono- of duoblok dwarsliggers in ballastbed (index b = 1);

  • baan op houten of zigzag betonnen dwars¬liggers in ballastbed (index b = 2);

  • baan met ballastbed met niet doorgelaste spoorstaven of onderbroken door maximaal twee niet voegloze wissels binnen 50 m (index b = 3);

  • baan met blokkenspoor (index b = 4);

  • baan met blokkenspoor en ballastbed (index b = 5);

  • baan met regelbare spoorstaafbevestiging (index b = 6);

  • baan met regelbare spoorstaafbevestiging en ballastbed (index b = 7);

  • baan met ingegoten spoorstaaf (index b = 8);

  • baan met directe railbevestiging op een onderheide betonplaat voor metro- en sneltrammaterieel (index b = 9);

  • baan met raildempers op betonnen mono- of duoblok dwarsliggers in ballastbed (index b = 10);

  • baan met HSL-Rhedaspoor (index b = 11);

  • baan met HSL – Rhedaspoor en raildempers (index b = 12);

  • baan bij overweg.

Cb,c geeft hierin het verschil aan tussen de emissie van een spoorvoertuig rijdend op een baan met betonnen dwarsliggers en een spoorvoertuig op een andere bovenbouwconstructie onder overigens gelijke omstandigheden. Niet genoemde types bovenbouw worden ingedeeld bij b=3, tenzij metingen aan deze bovenbouw zijn uitgevoerd volgens TR (procedure C).

De waarde van Cb,c volgt uit tabel 2.2. Voor overwegen volgt de waarde van Cb,c door 2 dB op te tellen bij de waarde volgens tabel 2.2 voor het type bovenbouwconstructie voor en na de overweg. Zijn deze verschillend, dan geldt de constructie met de hoogste Cb,c.

Tabel 2.1 Emissiekentallen ac en bc voor niet-remmende spoorvoertuigen en ar,c en br,c voor remmende spoorvoertuigen als functie van de spoorvoertuigcategorie c.

categorie

ac

bc

ar,c

br,c

1

14,9

23,6

16,4

25,3

2

18,8

22,3

19,6

23,9

3

20,5

19,6

20,5

19,6

4

24,3

20,0

23,8

22,4

5

46,0

10,0

47,0

10,0

6

20,5

19,6

20,5

19,6

7

18,0

22,0

18,0

22,0

8

25,7

16,1

25,7

16,1

9 (v≤100)

50,6

7,6

50,6

7,6

9 (100<v≤180)

23,5

21,0

23,5

21,0

9 (v>180)

5,5

29,0

5,5

29,0

10

17,1

19,4

21,2

17,3

11

20,5

19,6

20,5

19,6

12

26,3

14,9

26,3

14,9

Tabel 2.2 Correctieterm Cb,c als functie van de spoorvoertuigcategorie c en bovenbouwconstructie / baangesteldheid b.

c

b = 1

b = 2

b = 3

b = 4

b = 5

b= 6

b= 7

b= 8

b=9

b=10

b=11

b=12

1

0

2

4

6

3

5

0

2

0

–3

2

0

2

5

7

5

5

0

3

0

–3

3

0

1

3

5

2

3

0

2

0

–3

3

1

4

0

2

5

7

4

5

0

2

0

–3

5

0

1

2

4

4

4

0

2

0

–3

6

0

1

3

5

2

3

0

2

0

–3

7

0

1

1

1

1

5

1

1

7

–3

8

0

2

4

6

3

5

0

2

0

–3

3

1

9

0

2

4

7

5

4

0

3

0

–3

3

1

10

0

2

4

7

5

5

0

3

0

–3

11

0

2

3

5

2

4

0

2

0

–3

12

0

2

4

6

3

5

0

2

0

–3

3

1

Tabel 2.3 Toe te passen bovenbouwcorrecties bij verschillende typen betonnen kunstwerken

type kunstwerk

type bovenbouw op het kunstwerk

code b: getallen verwijzen naar tabel 2.2

TT- en kokerliggerbrug

regelbare bevestiging

6

plaat- en trogbrug

dwarsliggers in ballastbed (resp betonnen of houten)

1 of 2

 

regelbare bevestiging

6

 

regelbare bevestiging volgestort met ballast

7

plaatbrug

blokkenspoor

4

 

blokkenspoor volgestort met ballast

5

 

ingegoten spoorstaaf

8

2.2. Snelheden

[Regeling vervallen per 01-01-2024]

De emissieterm kan worden bepaald volgens dit hoofdstuk voor snelheden vanaf 40 km/h en met een maximum snelheid per spoorvoertuigcategorie zoals gegeven in tabel 2.4. Voor nieuw ingemeten materieel volgens TR geldt als maximale snelheid het maximum dat bij de metingen is meegenomen.

Tabel 2.4 Maximale rekensnelheden per spoorvoertuigcategorie.

Categorie

Maximale snelheid [km/h]

1

140

2

160

3

160

4

100

5

140

6

120

7

100

8

160

9

300

10

100

11

100

12

160

Voor spoorvoertuigen die niet zijn vermeld in een van de categorieën van paragraaf 1.2, geldt het maximum dat bij betreffend spoorvoertuig hoort volgens de specificaties van de fabrikant.

3. De emissiegetallen per octaafband

[Regeling vervallen per 01-01-2024]

3.1. Bronhoogten

[Regeling vervallen per 01-01-2024]

De bepaling van de emissiegetallen per octaafband vindt plaats op 5 verschillende bronhoogten, te weten:

  • op de hoogte van de bovenkant van het spoor (het emissiegetal

    Bijlage 250507.png

    );

  • een hoogte van 0,5 m boven de bovenkant van het spoor (het emissiegetal

    Bijlage 250508.png

    );

  • een hoogte van 2,0 m boven de bovenkant van het spoor (het emissiegetal

    Bijlage 250509.png

    );

  • een hoogte van 4,0 m boven de bovenkant van het spoor (het emissiegetal

    Bijlage 250510.png

    );

  • een hoogte van 5,0 m boven de bovenkant van het spoor (het emissiegetal

    Bijlage 250511.png

    ).

3.2. Bovenbouw

[Regeling vervallen per 01-01-2024]

Bovenbouwconstructies

Het emissietraject wordt als volgt getypeerd naar bovenbouwconstructie en baangesteldheid:

  • baan op betonnen mono- of duoblok dwarsliggers in ballastbed (index bb = 1);

  • baan op houten of zigzag betonnen dwarsliggers in ballastbed (index bb = 2);

  • baan met ballastbed met niet doorgelaste spoorstaven, spoorstaafonderbreking of wissels (index bb = 3);

  • baan met blokkenspoor (index bb = 4);

  • baan met blokkenspoor en ballastbed (index bb = 5);

  • baan met regelbare spoorstaafbevestiging (index bb = 6);

  • baan met regelbare spoorstaafbevestiging en ballastbed (index bb = 7);

  • baan met ingegoten spoorstaaf (index bb = 8);

  • baan met directe railbevestiging op een onderheide betonplaat voor metro- en sneltrammaterieel (index bb = 9);

  • baan met raildempers op betonnen mono- of duoblok dwarsliggers in ballastbed (index bb = 10);

  • baan met HSL-Rhedaspoor (index bb = 11);

  • baan met HSL – Rhedaspoor en raildempers (index bb = 12);

  • baan bij overweg.

Spoorconditie

De conditie van het spoor wordt in rekening gebracht via de term spoorconditie. In deze term is het effect van spoorstaafonderbrekingen en de spoorstaafruwheid opgenomen.

Spoorstaafonderbrekingen en wissels

Bij de bepaling van de emissiegetallen wordt onderscheid gemaakt naar de mate van voorkomen van spoorstaafonderbrekingen op het betreffende emissietraject:

  • voegloze spoorstaaf (doorgelast) met of zonder voegloze wissels en kruisingen (index m = 1);

  • niet doorgelaste spoorstaaf (=voegenspoorstaaf) (m = 2);

  • wissels (m = 3).

Wissels worden direct gemodelleerd met de werkelijke lengte. Bij de modellering van een wissel kan het worden opgesplitst in meerdere delen. De bovenbouwcorrectie wordt bepaald aan de hand van het type wissel: ‘voegloos’/‘intern-voegloos’/‘niet-voegloos’:

  • een voegloos wissel krijgt de bovenbouwcode die hoort bij het type dwarsligger;

  • een intern-voegloos/niet-voegloos wissel krijgt bovenbouwcode bb = 3;

  • voor een intern-voegloos wissel wordt aangenomen dat deze gemiddeld één voeg heeft;

  • voor een niet-voegloos wissel wordt aangenomen dat deze gemiddeld drie voegen heeft;

  • het aantal voegen gedeeld door de totale lengte van het wissel levert de informatie om de stootgeluidcorrectie te bepalen (de factor fm voor toepassing in formule 3.3c);

Spoorstaafruwheid

Ten slotte is het mogelijk om rekening te houden met situaties waarbij structureel sprake is van een fors afwijkende spoorstaafruwheid dan het landelijk gemiddelde dat de basis is voor de Standaadrekenmethode 2 in deze bijlage. Dit is met name bedoeld om de mogelijkheid te bieden de geluidreducerende effecten in de berekening te verwerken van het onderhouden van het spoor in een toestand met extra lage spoorstaafruwheid (door bijvoorbeeld intensief onderhoud of akoestisch slijpen).

3.3. Gegevens

[Regeling vervallen per 01-01-2024]

Voor de berekening van de emissiegetallen per octaafband zijn de volgende gegevens nodig:

Qp,c: het gemiddelde aantal rekeneenheden van spoorvoertuigen met snelheidsprofiel p van de betreffende spoorvoertuigcategorie c waarvan het remsysteem niet is ingeschakeld [h-1];

Qp,r,c: het gemiddelde aantal eenheden van spoorvoertuigen met snelheidsprofiel p van de betreffende spoorvoertuigcategorie c waarvan het remsysteem is ingeschakeld [h-1];

vp,c: de gemiddelde snelheid van de spoorvoertuigen met snelheidsprofiel p van de betreffende spoorvoertuigcategorie c [kmh-1];

p: snelheidsprofiel: doorgaand (d) en stoppend (s);

bb: het type bovenbouwconstructie/baangesteldheid [–];

m: aanduiding van de mate van voorkomen van spoorstaafonderbrekeningen [–].

3.4. Berekeningswijze

[Regeling vervallen per 01-01-2024]

De berekening verloopt als volgt:

Bijlage 265286.png

(3.1a)

Bijlage 265287.png

(3.1b)

Bijlage 250444.png

Voor categorie 1, 2, 3, 6, 7, 8 is

Bijlage 250445.png

Voor categorie 4, 5 en 11 is

Bijlage 250446.png

Voor categorie 9 is

Bijlage 250447.png

Voor categorie 10 en 12 is

Bijlage 271190.png

met

Bijlage 250449.png

en voor c = 3, 5, 6

Bijlage 250450.png

en voor c = 9

Bijlage 250451.png

De waarden van de emissiekentallen ac en bc zijn gegeven in tabellen tabel 3.1 en tabel 3.2.

Tabel 3.1 Emissiekentallen ac en bc als functie van spoorvoertuigcategorie c en octaafbandindex (i).

categorie

kental

octaafband i met middenfrequentie in [Hz]

63

125

250

500

1k

2k

4k

8k Hz

1

2

3

4

5

6

7

8

1

a

20

55

86

86

46

33

40

29

b

19

8

0

3

26

32

25

24

2

a

51

76

91

84

46

15

24

36

b

5

0

0

7

26

41

33

20

3

a, v<60

v≥60

54

36

50

15

66

66

86

68

68

51

68

51

45

27

39

21

b, v<60 v≥60

0

10

10

30

10

10

0

10

10

20

10

20

20

30

20

30

3

motor

a, v<60 v≥60

72

72

88

35

85

50

51

68

62

9

54

71

25

7

15

–3

b, v<60

v≥60

–10

–10

–10

20

0

20

20

10

10

40

20

10

30

40

30

40

4

a

30

74

91

72

49

36

52

52

b

15

0

0

12

25

31

20

13

5

a, v<60

v≥60

41

41

90

72

89

89

76

94

59

76

58

58

51

51

40

40

b, v<60

v≥60

10

10

–10

0

0

0

10

0

20

10

20

20

20

20

20

20

5

motor

a

88

95

107

113

109

104

98

91

b

–10

–10

–10

–10

–10

–10

–10

–10

6

a, v<60

v≥60

54

36

50

15

66

66

86

68

68

51

68

51

45

27

39

21

b, v<60

v≥60

0

10

10

30

10

10

0

10

10

20

10

20

20

30

20

30

6

motor

a, v<60

v≥60

72

72

88

35

85

50

51

68

62

9

54

71

25

7

15

–3

b, v<60

v≥60

–10

–10

–10

20

0

20

20

10

10

40

20

10

30

40

30

40

7

a

56

62

53

57

37

36

41

38

b

2

7

18

18

31

30

25

23

8

a

31

62

87

81

55

35

39

35

b

15

5

0

6

19

28

23

19

9

a, v<120

v≥120

56

38

78

69

100

92

106

87

75

62

73

43

88

48

58

46

b, v<120

v≥120

5

15

1

5

–4

0

–4

6

13

19

13

28

3

23

16

19

9

koeling

a

54

69

79

84

84

83

82

78

b

0

0

0

0

0

0

0

0

9

aero

a

–45

–35

–27

–25

–26

–25

–25

–30

b

50

50

50

50

50

50

50

50

10-bs

a

7

50

62

69

42

43

30

14

b

20

10

9

8

24

23

25

28

10-as

a

25

78

51

39

29

26

25

18

b

13

–8

9

20

25

29

31

28

11

a

57

30

59

71

45

66

22

18

b

0

24

16

10

24

14

34

32

12-bs

a

23,5

60,8

70,7

55,5

46,0

51,2

60,6

53,8

b

17,8

7,5

6,8

16,4

19,7

17,8

10,9

11,2

12-as

a

18,9

55,9

67,3

50,6

43,2

47,4

57,3

50,0

b

18,1

7,5

6,7

17,7

19,7

17,8

10,4

11,0

Crem,i,c wordt bepaald volgens tabel 3.2.

Tabel 3.2 De remgeluid-correctieterm Crem,i,c als functie van de spoorvoertuigcategorie (c) en octaafband (i).

octaafbandindex i

Crem,i,c

c = 1, 4, 5

c = 2

c = 7

c = 3, 6, 8, 9, 11, 12

c = 10

1

–20

–20

–8

–20

2

2

–20

–20

–7

–20

–1

3

–20

–20

–20

–20

0

4

–2

0

–20

–20

2

5

2

1

–20

–20

5

6

3

2

–20

–20

4

7

8

5

–20

–20

4

8

9

5

–5

–20

3

De bovenbouwcorrectietermen

Bijlage 250512.png

en

Bijlage 250513.png

brengen het effect van verschillende baanconstructies in rekening op twee bronhoogten. Daarbij is een spoorstaafruwheid zoals gemiddeld in Nederland optreedt het uitgangspunt. De bovenbouwcorrectietermen zijn als volgt gedefinieerd:

Bijlage 250452.png

De waarde voor de bovenbouwcorrectieterm voor verschillende bovenbouwconstructies is gegeven in tabel 3.3.

Tabel 3.3 Correctieterm Cbb,i als functie van bovenbouwconstructie/baangesteldheid (bb) en octaafband (i).

octaafband i

Cbb,i

bb = 1

bb = 2

bb = 3

bb = 4

bb = 5

bb = 6

bb = 7

bb = 8

bb = 9

bb = 10

bb = 11

bb=12

1

0

1

1

6

6

3

6

5

7

0

0

0

2

0

1

3

8

8

4

1

4

2

0

0

0

3

0

1

3

7

8

–1

0

3

1

–1

0

–2

4

0

5

7

10

9

3

0

6

4

–2

7

4

5

0

2

4

8

2

7

0

2

7

–4

7

5

6

0

1

2

5

1

4

0

1

9

–3

3

–5

7

0

1

3

4

1

3

0

0

5

–2

2

–3

8

0

1

4

0

1

3

0

0

1

–1

0

–4

De invloed van de conditie van het spoor op de geluidemissie wordt in rekening gebracht met de term

Bijlage 250514.png

. Hiermee wordt het effect beschreven van eventuele voegen in het spoor of van een spoorstaafruwheid die sterk afwijkt van het Nederlands gemiddelde. Voor de bepaling van deze term wordt formule (3.3b) of (3.3c) gebruikt, afhankelijk van de mate van spooronderbreking:

Bijlage 250453.png

of

Bijlage 250454.png

Voor voegend spoor en voegende wissels zijn de waarden voor fm en Ai in onderstaande tabellen opgenomen. De lengte van het wissel (in de tabel genoemd ‘lengte wissel’) wordt bepaald door de totale lengte van het wissel (van de voorlas tot de achterlas) en niet de lengte van het gemodelleerde wisselgedeelte.

Tabel 3.4 Waarden voor de factor fm (als m ongelijk is aan 1).

omschrijving

m

fm

voegenspoor

2

1/30

intern-voegloos wissel

3

1/lengte wissel

niet-voegloos wissel

4

3/lengte wissel

Tabel 3.5 Kental voor stootgeluidemissie Ai als functie van octaafband (i).

octaafband i

Ai

1

3

2

40

3

20

4

3

5, 6, 7, 8

0

De extra geluidemissie van ruwe spoorstaven of de geluidreductie door gladdere spoorstaven wordt verwerkt door het verschil in de energetische som van wiel- en spoorstaafruwheid in de bovenbouwcorrectieterm te verwerken. Deze methodiek geldt alleen voor voegloze spoorstaven (m=1). Voor niet-voegloze spoorstaven mag geen spoorstaafruwheidscorrectie toegepast worden.

Het effect van de afwijkende ruwheid wordt in rekening gebracht met de coëfficiënt

Bijlage 250515.png

. Deze term is afhankelijk van de snelheid (v) en de spoorvoertuigcategorie (c). Indien ervoor gekozen wordt niet te corrigeren voor een eventueel lokaal afwijkende spoorstaafruwheid geldt

Bijlage 250516.png

.

Bijlage 250455.png

met:

Li,rtr,ref(v): de referentieruwheid (afgeleid uit de gemiddelde spoorstaafruwheid in Nederland).

Li,rtr,feitelijk(v): de lokale ruwheid van de spoorstaven waar de berekeningen worden uitgevoerd.

Li,rveh,c(v): de wielruwheid van de diverse spoorvoertuigcategorieën, volgens tabel 3.7.

Het symbool ⊕ staat voor energetische sommatie (x ⊕ y = 10lg (10x/10+ 10y/10)).

Voor de spoorvoertuigcategorieën uit dit voorschrift geldt het volgende verband tussen remsysteem en spoorvoertuigcategorie:

  • – categorie 1, 4, 5: gietijzeren blokkenrem;

  • – categorie 2: schijfrem + toegevoegde gietijzeren blokkenrem;

  • – categorie 3, 6, 7, 8, 9, 10 en 12: schijfrem;

  • – categorie 11: alleen alternatieve blokkenrem.

Voor nieuwe spoorvoertuigen die worden ingemeten volgens TR procedure B volgt de gemiddelde wielruwheid uit de metingen.

Tabel 3.6 Spoorstaafruwheid als functie van de golflengte.

Golflengte [mm]

630

500

400

315

250

200

160

125

100

80

63

50

40

31,5

25

referentie

13

12

11

10

9

8

7

6

5

4

3

2

1

0

–1

geoptimaliseerd voor snelheden < 200 km/h

1

1

1

1

1

5,5

4,0

2,5

1,0

–0,5

–2,0

–3,5

–5,0

–6,5

–8,0

geoptimaliseerd voor snelheden > 200 km/h

13,0

12,0

5,0

4,0

3,0

2,0

1,0

0,0

–1,0

–1,5

–2,0

–2,5

–3,0

–3,5

–4,0

1Gegevens zijn niet beschikbaar, geadviseerd wordt om voor deze golflengten uit te gaan van de referentieruw

Golflengte [mm]

20

16

12,5

10

8

6,3

5

4

3,15

2,5

2

1,6

1,25

1

referentieruwheid

–2

–3

–4

–5

–6

–7

–8

–9

–10

–11

–12

–13

–14

–15

geoptimaliseerd voor snelheden < 200 km/h

–9,5

–11,0

–11,3

–11,6

–11,9

–12,2

–12,5

–12,8

–13,1

1

1

1

1

1

geoptimaliseerd voor snelheden > 200 km/h

–4,5

–5,0

–5,0

–5,0

–6,0

–7,0

–8,0

–9,0

–10,0

–11,0

–12,0

–13,0

1

1

1Gegevens zijn niet beschikbaar, geadviseerd wordt om voor deze golflengten uit te gaan van de referentieruw

Tabel 3.7 Wielruwheid afhankelijk van het type remsysteem als functie van de golflengte

Golflengte [mm]

630

500

400

315

250

200

160

125

100

80

63

50

40

31,5

25

schijfrem + toegevoegde gietijzeren blokkenrem

16

15

14

13

12

11

11

12

13

14

16

15

12

11

10

alleen gietijzeren blokkenrem

10

9

8

7

6

5

6

7

9

11

13

12

10

8

6

alleen schrijfrem

13

12

11

10

9

8

7

7

6

6

3

1

–1

–2

–3

Alleen alternatieve blokkenrem

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1Gegevens niet bekend; indien nodig vaststellen m.b.v. methode TR B.

Golflengte [mm]

20

16

12,5

10

8

6,3

5

4

3,15

2,5

2

1,6

1,25

1

schijfrem + toegevoegde gietijzeren blokkenrem

6

3

–2

–5

–7

–8

–9

–10

–11

–12

–13

–14

–15

–16

schijfrem + toegevoegde alternatieve blokkenrem

–3

–3

–4

–5

–7

–8

–9

–10

–11

–12

–13

–14

–15

–16

alleen gietijzeren blokkenrem

5

0

–1

–1

–3

–4

–5

–6

–7

–8

–9

–10

–11

–12

alleen schrijfrem

–3

–4

–4

–5

–7

–8

–9

–10

–11

–12

–13

–14

–15

–16

Alleen alternatieve blokkenrem

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1Gegevens niet bekend; indien nodig vaststellen m.b.v. methode TR B.

De spoorstaafruwheid Lrtr van de meetlocatie wordt gemeten in 1/3-octaven volgens de procedures omschreven in NEN-EN-ISO 3095:2005. De spoorstaafruwheid wordt op representatieve locaties gemeten en in het model verwerkt. Deze meetlocaties zijn verdeeld over het gehele spoorweggedeelte dat in het model wordt opgenomen. De meetgegevens zijn onderdeel van de rapportage van het akoestische onderzoek.

De wiel- en spoorstaafruwheden dienen in octaafbanden te zijn uitgedrukt. Om van ruwheidsgolflengte de correctie in geluidoctaafbanden te krijgen, wordt de volgende methode gehanteerd.

  • 1. Bepaal de ruwheidscorrectie per golflengtegebied λ (van 1 tot 630mm):

    Bijlage 250456.png

    Als de ruwheid niet afwijkt van de referentieruwheid dan is de ruwheidscorrectie voor een bepaalde golflengte:

    Bijlage 250517.png

    .

  • 2. Bepaal de ruwheidscorrectie per werkelijke geluidsfrequentie f:

    Bijlage 250518.png

    . met

    Bijlage 250519.png

    . met frequentie f in Hz, voertuigsnelheid v in km/h en golflengte λ in mm. Dus

    Bijlage 250457.png
  • 3. De werkelijke geluidsfrequentie f komt in het algemeen niet overeen met de preferente tertsbandmiddenfrequenties (deze zijn voor deze toepassing fterts = 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000, en 10000 Hz). Daarom worden de waardes van

    Bijlage 250520.png

    bepaald uit lineaire interpolatie van de waardes van

    Bijlage 250521.png

    . Zoek hiervoor de twee werkelijke geluidsfrequenties f_ en f+ die het dichtst liggen bij de tertsmiddenbandfrequentie fterts zodat geldt:

    Bijlage 250522.png

    .

    Dan geldt:

    Bijlage 250458.png

    Hiermee is de ruwheidscorrectie per tertsband bepaald.

  • 4. De ruwheidscorrectie per tertsband wordt ten slotte energetisch gemiddeld om een ruwheidscorrectie per octaafband i te berekenen. Daarvoor worden eerst de drie tertsbandmiddenfrequenties gezocht die binnen de octaafband vallen. Dit is samengevat in onderstaande tabel:

    Tabel 3.8 Standaard middenfrequenties voor oktaaf- en tertsbanden

    i

    octaafband

    f oct

    tertsbanden

    f terts1, fterts1, fterts3

    1

    63

    50, 63, 80

    2

    125

    100, 125, 160

    3

    250

    200, 250, 315

    4

    500

    400, 500, 630

    5

    1000

    800, 1000, 1250

    6

    2000

    1600, 2000, 2500

    7

    4000

    3150, 4000, 5000

    8

    8000

    6300, 8000, 10000

    Vervolgens kan de ruwheidscorrectie per octaafband worden bepaald met de volgende formule:

    Bijlage 250459.png

    In veel situaties waarin wordt overwogen plaatselijk een extra lage spoorstaafruwheid aan te brengen en te onderhouden is het ten tijde van het akoestisch onderzoek nog niet mogelijk de spoorstaafruwheid door meting vast te stellen, omdat deze pas wordt aangebracht nadat geluidprocedures zijn doorlopen. In dat geval wordt aangetoond dat de lage spoorstaafruwheid waarmee wordt gerekend, in de praktijk is te maken en te onderhouden.

    Maatgevend daarbij is dat per spoorvoertuigcategorie de op basis van de verwachte lage spoorstaafruwheid berekende geluidreductie, gemiddeld over de tijdsperiode tussen twee slijpbeurten en over het betreffende spoorweggedeelte bezien, ook in werkelijkheid optreedt. Bovendien worden lokale afwijkingen voorkomen als die gemiddeld over de tijdsperiode tussen twee slijpbeurten leiden tot een 1 dB lagere geluidreductie dan was berekend. De middelingen over de tijd en over het spoorweggedeelte zijn lineaire middelingen.

    Indien emissiegegevens volgens TR procedure B beschikbaar zijn inclusief effectieve ruwheden en overdrachten van het te berekenen spoorweggedeelte en spoorvoertuig, dan worden de termen Cbb,i en Cspoorconditie,i,c,m

    niet te worden gebruikt.

3.5. Emissie van betonnen en stalen kunstwerken

[Regeling vervallen per 01-01-2024]

3.5.1. Betonnen kunstwerken

[Regeling vervallen per 01-01-2024]

Bij betonnen kunstwerken en de daarop toegepaste bovenbouwconstructie is de emissie ten gevolge van het rolgeluid én van de geluiduitstraling door het kunstwerk zelf verwerkt in de betreffende bovenbouwcorrectie (tabel 2.2 en tabel 3.3). Bij toepassing van schermen op het kunstwerk wordt hierdoor het effect van de schermen bij lage frequenties overschat. Deze modellering is daarom slechts toelaatbaar voor schermen met een maximum hoogte van 2 m boven de bovenkant van het spoor. Voor hogere schermen is nader akoestisch onderzoek noodzakelijk.

De toe te passen bovenbouwcorrecties voor verschillende typen betonnen kunstwerken is gegeven in tabel 3.9.

Tabel 3.9 Toe te passen bovenbouwcorrecties bij verschillende typen betonnen kunstwerken. De cijfers in de tabel verwijzen naar de codes van tabel 3.3.

type kunstwerk

type bovenbouw op het kunstwerk

code bb

TT- en kokerliggerbrug

regelbare bevestiging

6

plaat- en trogbrug

dwarsliggers in ballastbed (resp. betonnen of houten)

1 of 2

regelbare bevestiging

6

regelbare bevestiging volgestort met ballast

7

plaatbrug

blokkenspoor

4

blokkenspoor volgestort met ballast

5

ingegoten spoorstaaf

8

3.5.2. Stalen kunstwerken

[Regeling vervallen per 01-01-2024]

Bij stalen kunstwerken wordt de toename van de emissie ten gevolge van de invloed van het kunstwerk in rekening gebracht met een geluidemissietoeslag. De toename van de emissie kan worden toegeschreven aan geluidemissie van het kunstwerk zelf en een toename van het rolgeluid op het kunstwerk. De emissie ten gevolge van de geluiduitstraling door het kunstwerk zelf wordt verwerkt door het toevoegen van een bronlijn op 0 meter BS en de extra emissie ten gevolge van de toename van het rolgeluid wordt verrekend als toename van de emissie op de reeds gemodelleerde bronnen op 0 en 0,5 meter BS.

In de geluidemissietoeslag is het effect van een mogelijk afwijkende bovenbouwconstructie en eventuele extra afschermende delen van het kunstwerk al verwerkt. Daarom wordt bij stalen kunstwerken in de modellering uitgegaan van bovenbouwconstructie bb=1 en worden de afschermende delen van het kunstwerk niet gemodelleerd.

De geluidemissietoeslag voor een stalen kunstwerk wordt meettechnisch bepaald volgens de methode beschreven in paragraaf 6.2.

Voor het toepassen van schermen als geluidmaatregel op het kunstwerk is nader onderzoek nodig.

3.6. Snelheden

[Regeling vervallen per 01-01-2024]

De emissie kan worden bepaald volgens dit hoofdstuk voor snelheden van ten minste 40 km/h en met een maximum snelheid per spoorvoertuigcategorie zoals gegeven in tabel 2.4 (paragraaf 2.2).

4. Standaardrekenmethode 1 (SRM1)

[Regeling vervallen per 01-01-2024]

4.1. Begrippen

[Regeling vervallen per 01-01-2024]

  • afstand tot bronlijn: kortste afstand tussen het waarneempunt en de bronlijn (symbool r);

  • begrenzingslijnen: begrenzingen van de voor de geluidimmissie meest bepalende omgeving van het waarneempunt (zie figuur 4.1);

  • bronlijn: lijn gelegen in het midden van het spoor op 0,25 m boven de bovenkant van de spoorstaven, die de plaats van de geluidsafstraling van de spoorvoertuigen representeert;

  • hoogte van de bovenkant van het spoor: hoogte van de bovenkant van het spoor ten opzichte van het plaatselijk maaiveld (symbool hbs);

  • hoogte van de waarnemer: hoogte van de waarnemer ten opzichte van het plaatselijk maaiveld (symbool hw);

  • horizontale afstand tot bronlijn: kortste horizontale afstand tussen een (waarneem)punt en de bronlijn (symbool d, eventueel met indices)

  • waarneempunt: punt waarvoor het equivalente geluidsniveau in dB,; het LAeq, moet worden bepaald; als deze bepaling dient ter vaststelling van de geluidsbelasting van een gevel dan ligt dit punt in het betreffende gevelvlak.

Bijlage 250460.png
Figuur 4.1 Horizontale projectie van het aandachtsgebied, dat ten behoeve van de toetsing aan de toepassingsvoorwaarden wordt gedefinieerd.

4.2. Geometrische definiëring situatie

[Regeling vervallen per 01-01-2024]

Vanuit de waarnemer W wordt de kortste verbindingslijn naar de as van het spoor getrokken (de lengte van WS is d). Op afstanden 2d vanuit W liggen evenwijdig aan WS de begrenzinglijnen I1 en I2. De lijn door S loodrecht op WS, representeert de as van het denkbeeldige spoor (die het model is van de werkelijke spoorweg).

4.3. Toepassingsbereik methode

[Regeling vervallen per 01-01-2024]

De Standaardrekenmethode 1 is gebaseerd op een vereenvoudiging van de situatie, waardoor ten aanzien van het toepassingsbereik van de methode de volgende voorwaarden gelden voor het aandachtsgebied tussen de begrenzingslijnen I1 en I2.

  • a. de as van de werkelijke spoorweg doorsnijdt één van de in figuur 4.1 aangegeven gearceerde gebieden niet;

  • b. het zicht vanuit de waarnemer op de spoorweg wordt niet belemmerd over een hoek van meer dan 30°;

  • c. als de spoorweg bestaat uit meer dan één emissietraject, verschillen de emissiegetallen van die emissietrajecten onderling niet meer dan 10 dB;

  • d. de afstand (d) van het waarneempunt tot de as van de spoorweg bedraagt ten minste anderhalf maal de afstand tussen de buitenste spoorstaven van de spoorweg;

  • e. binnen het aandachtsgebied bevinden zich in de spoorweg geen kunstwerken en treden geen hoogteverschillen op van meer dan drie meter ten opzichte van de gemiddelde hoogte.

Er wordt geen rekening gehouden met afschermende objecten en bebouwing tussen de spoorweg en het waarneempunt.

4.4. Rekenmodel

[Regeling vervallen per 01-01-2024]

Het equivalente geluidsniveau LAeq in dB vanwege het spoorwegverkeer wordt gevonden uit:

Bijlage 250461.png

met:

Creflectie: correctieterm in verband met eventuele reflecties tegen bebouwing of andere verticale vlakken;

Dafstand: verzwakkingterm, afhankelijk van de afstand;

Dlucht: verzwakkingterm ten gevolge van de luchtabsorptie;

Dbodem: verzwakkingterm ten gevolge van het bodemeffect;

Dmeteo: meteocorrectieterm;

Es: het samengestelde emissiegetal bepaald volgens:

Bijlage 250462.png

waarin:

Ei: het emissiegetal van emissietraject i zoals bepaald volgens hoofdstuk 2;

Фi: de hoek waaronder het emissietraject i vanuit het waarneempunt wordt gezien (in graden);

n: het aantal emissietrajecten binnen het aandachtsgebied.

4.5. Modellering van de situatie

[Regeling vervallen per 01-01-2024]

4.5.1. Bronlijn

[Regeling vervallen per 01-01-2024]

Bij het modelleren van geometrische gegevens is het uitgangspunt voor verticale maten de bovenkant van de spoorstaven (BS) en voor horizontale maten het midden van het spoor. De lijn die op het midden van het spoor loopt op een hoogte van 0,25 meter boven de bovenkant van de spoorstaven (BS) is in de modellering de bronlijn.

4.5.2. Reflecties

[Regeling vervallen per 01-01-2024]

De reflectieterm wordt in rekening gebracht voor vlakken die zich ten opzichte van het waarneempunt aan de overzijde van de spoorweg bevinden, als voor deze vlakken geldt dat:

  • a. deze akoestisch hard zijn;

  • b. deze verticaal en ongeveer evenwijdig aan de spoorweg staan;

  • c. deze hoger zijn dan de hoogte van de waarnemer hw;

  • d. de horizontale afstand (dr) daarvan tot de bronlijn kleiner is dan 100 meter en tevens kleiner dan viermaal de horizontale afstand (dw) van het waarneempunt tot de bronlijn.

4.5.3. Waarneempunten

[Regeling vervallen per 01-01-2024]

Waarneempunten voor gebouwen worden ten minste gekozen ter hoogte van de eerste verdieping (dit is een hoogte van 5 meter boven plaatselijk maaiveld) en bij woongebouwen met drie of meer woonlagen ter hoogte van de bovenste verdieping (dit is 1 meter onder de nok van het gebouw). Daarnaast kan voor de begane grond, en voor de beoordeling van het buitenklimaat een waarneempunt op 1,5 meter boven plaatselijk maaiveld worden gekozen.

4.6. Reflectieterm

[Regeling vervallen per 01-01-2024]

De reflectieterm Creflectie wordt als volgt berekend:

Bijlage 250463.png

waarbij:

fobj: de objectfractie. De objectfractie is binnen een afstand van 4(dr + dw), evenwijdig aan de spoorweg en symmetrisch ten opzichte van het waarneempunt, de totale lengte waarover aan de overzijde van de spoorweg de geluidreflecterende vlakken zich uitstrekken ten opzichte van deze afstand van 4(dr + dw).

dr: de horizontale afstand tussen het reflecterende object en de bronlijn;

dw: de horizontale afstand tussen het waarneempunt en de bronlijn.

4.7. Afstandsterm

[Regeling vervallen per 01-01-2024]

De afstandsterm Dafstand wordt berekend volgens:

Bijlage 250464.png

waarbij:

r: de kortste afstand tussen het waarneempunt en de betreffende bronlijn.

4.8. Luchtabsorptie

[Regeling vervallen per 01-01-2024]

De luchtabsorptieterm Dlucht wordt als volgt berekend:

Bijlage 250465.png

waarbij:

r: de kortste afstand tussen het waarneempunt en de betreffende bronlijn.

4.9. Bodemeffecten

[Regeling vervallen per 01-01-2024]

Dbodem wordt als volgt berekend:

Bijlage 250466.png

waarbij:

B: de bodemfactor, het gedeelte van de bodem tussen bron en waarneempunt dat niet verhard is.

De bodemfactor is het gedeelte van de horizontale projectie van de verbindingslijn tussen het waarneempunt en het hart van het spoor dat boven een niet verharde bodem ligt. Als niet verharde bodem gelden: ballastbed, grasland, landbouwgrond met of zonder gewas, zandvlakten en bodem zonder vegetatie.

4.10. Meteocorrectieterm

[Regeling vervallen per 01-01-2024]

De meteocorrectieterm Dmeteo wordt als volgt berekend:

Bijlage 250467.png

Als op grond van formule 4.7 een negatieve waarde voor Dmeteo wordt bepaald, wordt voor Dmeteo de waarde nul aangehouden.

5. Standaardrekenmethode 2 (SRM2)

[Regeling vervallen per 01-01-2024]

5.1. Begrippen

[Regeling vervallen per 01-01-2024]

  • bronlijn: lijn gelegen boven het hart van het spoor op een bepaalde hoogte boven de bovenkant van het spoor (BS), die de plaats van de geluidsafstraling representeert; afhankelijk van het type materieel worden twee tot vier bronlijnen onderscheiden;

  • bronlijnsegment: rechte verbindingslijn tussen de snijpunten van een bronlijn met de grensvlakken van een sector;

  • bronpunt: snijpunt van een sectorvlak met een bronlijnsegment;

  • openingshoek van een sector: hoek tussen de begrenzingvlakken van een sector in het horizontale vlak;

  • sector: ruimte begrensd door twee verticale half-vlakken waarvan de grenslijnen samenvallen met de verticaal door het waarneempunt;

  • sectorvlak: bissectricevlak van de twee grensvlakken van een sector;

  • totale openingshoek: som van de openingshoeken van alle sectoren die voor het bepalen van het equivalente geluidsniveau in dB van belang zijn;

  • waarneempunt: punt waarvoor het equivalente geluidsniveau in dB, het LAeq, moet worden bepaald; als deze bepaling dient ter vaststelling van de geluidbelasting van een gevel dan ligt dit punt in het betreffende gevelvlak;

  • zichthoek: hoek waaronder een object (gevel, scherm, baanvak etc.) in horizontale projectie wordt gezien vanuit het waarneempunt.

5.2. De hoofdformule

[Regeling vervallen per 01-01-2024]

Het equivalent geluidniveau in dB, het LAeq, wordt als volgt berekend:

Bijlage 250468.png

waarbij Leq,i,j,n de bijdrage is aan het LAeq in één octaafband (index i), van één sector (index j) en van één bronpunt (index n).

Leq,i,j,n wordt samengesteld uit de volgende termen:

Bijlage 250469.png

waarin:

LE,..: de emissiegetallen per bronhoogte en per octaafband, bepaald volgens hoofdstuk 3;

∆LGU: de geometrische uitbreidingsterm (paragraaf 5.4)

∆LOD: de overdrachtsverzwakking (paragraaf 5.5)

∆LSW: de schermwerking, indien van toepassing (paragraaf 5.6)

∆LR: de niveaureductie ten gevolge van reflecties, indien van toepassing (paragraaf 5.9)

Er wordt gesommeerd over de octaafbanden met de nominale middenfrequenties 63, 125, 250, 500, 1000, 2000, 4000 en 8000 Hz.

De sectorindeling is zodanig dat de geometrie en de spoorgegevens in een sector goed worden beschreven met de geometrie en de spoorgegevens in het sectorvlak. Ter wille van een goede beschrijving van de geluidemissie is per sector slechts één emissietraject aanwezig. Bij discontinuïteiten in de geometrie (hoeken van gebouwen, uiteinden van schermen en dergelijke) en in de verkeersgegevens (bij verandering van het emissiegetal) wordt een kleinere sectorhoek toegepast. De maximale openingshoek van een sector bedraagt 5°, de minimale openingshoek 0,5°.

Bij de sectorindeling kan ook worden uitgegaan van een vaste openingshoek van 2°.

Het aantal bronpunten, N, binnen een sector wordt bepaald door het aantal keer dat het betreffende sectorvlak een bronlijn (segment) snijdt.

5.3. Modellering van de situatie

[Regeling vervallen per 01-01-2024]

5.3.1. Bronlijnen

[Regeling vervallen per 01-01-2024]

Bij het modelleren van geometrische gegevens is het uitgangspunt voor verticale maten de bovenkant van het spoor (BS) en voor horizontale maten het hart het spoor. De lijnen die op het hart van het spoor lopen met verschillende hoogten boven de bovenkant van het spoor (BS) zijn in de modellering de bronlijnen. Voor de meeste spoorvoertuigcategorieën zijn er twee bronlijnen op 0 cm en op 0,5 meter boven de bovenkant van het spoor (BS). Voor spoorvoertuigcategorie 9 zijn er vijf bronlijnen op 0, 0,5 meter, 2,0 meter, 4,0 meter en 5,0 meter boven de bovenkant van het spoor (BS).

De spoorweg wordt bij voorkeur opgebouwd uit emissietrajecten in stappen die niet kleiner zijn dan 100 meter. Indien bij bogen, geluidsschermen en andere bijzondere situaties deze stap te groot is om essentiële kenmerken van de geometrie tot zijn recht te laten komen, kunnen kleinere stappen worden gekozen.

5.3.2. Bodemgesteldheid

[Regeling vervallen per 01-01-2024]

De bodemgesteldheid wordt verdeeld in twee groepen, akoestisch hard en niet hard. Onder akoestisch hard (B=0) wordt verstaan: klinkers, asfalt, beton, andere bodemverhardingen, wateroppervlakken en dergelijke. Als akoestisch niet hard (B=1) gelden: ballastbed, grasland, landbouwgrond met of zonder gewas, zandvlakten, bodem zonder vegetatie etc.

5.3.3. Hoogteverschillen in bodem

[Regeling vervallen per 01-01-2024]

De hoogte van bronnen, objecten en waarneempunten zijn gedefinieerd ten opzichte van de gemiddelde hoogte van het plaatselijk maaiveld. Deze gemiddelde hoogte wordt bepaald uit de doorsnede in het beschouwde sectorvlak als een (oppervlakte) gemiddelde over een aangegeven horizontale afstand. Zo geldt voor de bron de gemiddelde maaiveldhoogte in het brongebied en voor een scherm de gemiddelde maaiveldhoogte binnen 5 m vanaf het equivalente scherm. In figuur 5.1 en figuur 5.2 is dit geïllustreerd.

Bijlage 250470.png
Figuur 5.1 Hoogten t.o.v. gemiddeld plaatselijk maaiveld. Door de verhoogde baan ligt het gemiddelde maaiveld in het brongebied iets boven het maaiveld naast het talud.
Bijlage 250471.png
Figuur 5.2 Scherm op een verhoogde baan; het gemiddelde maaiveld links is wat lager dan de bovenzijde en rechts wat hoger dan naast het talud. De situatie rechts is bepalend voor hτ.

5.3.4. Standaard talud

[Regeling vervallen per 01-01-2024]

Bijlage 250472.png
Figuur 5.3 Dwarsdoorsnede van een standaard talud.

Figuur 5.3 geeft een dwarsdoorsnede van een deel van een spoortalud in werkelijkheid weer. In figuur 5.4 is de modellering ervan weergegeven. Bij het modelleren gelden de volgende regels:

  • centraal in de modellering staat de rijlijn; voor elk spoor wordt een rijlijn midden tussen de spoorstaven in gemodelleerd (de afstand tussen de twee spoorstaven bedraagt 1,42 meter);

  • iedere rijlijn (A) wordt op de hoogte van de werkelijke bovenkant van het spoor (BS) gemodelleerd;

  • op 0,2 meter recht onder iedere rijlijn wordt een hoogtelijn en een daaraan gekoppeld een stomp scherm Cp=2 dB (F) gemodelleerd (het absorberende ballastbed ligt op 0,2 meter onder BS);

  • de kant aarden baan (KAB) wordt als hoogtelijn met daaraan gekoppeld een stomp geluidsscherm (B) op werkelijke hoogte ten opzichte van BS (b1) en van maaiveld (b2) en op 4.5 meter (b3) naast de naastliggende rijlijn gemodelleerd; alleen als de werkelijke afstand tussen het hart van het spoor en de KAB meer dan 1 meter verschilt van de hiervoor genoemde 4.5 meter wordt voor b3 de deze werkelijke afstand gemodelleerd (meestal zal de afwijking echter minder dan 1 meter bedragen en meestal zal de KAB op 0.5 meter onder BS liggen);

  • een eventueel aanwezig geluidscherm op de rand van het talud wordt gemodelleerd als (scherp) scherm (D) op werkelijke hoogte ten opzichte van BS (d1) en op werkelijke afstand van het hart van het spoor (d2); (geluidschermen zijn meestal op 4,5 of 4,75 m uit het hart van het spoor geplaatst);

  • de teen van het talud wordt als hoogtelijn (C) op de hoogte van het werkelijke maaiveld ten opzicht van BS (c1) en op de werkelijke afstand van het hart van het spoor (c2) gemodelleerd;

  • kies voor de helling van het talud een verhouding 1:1,5. De kant aarden baan is de lijn waar het vlakke deel van het talud overgaat in een helling; deze ligt per definitie op 4,5 m van de naastliggende bronlijn;

  • de kant aarden baan is een stomp, absorberend scherm (Cp = 2 dB);

  • bij ballastbed is het bodemvlak voor het gehele horizontale deel van het talud absorberend (B=1), tenzij de daadwerkelijk harde delen van dit gebied breder dan 1 m zijn.

Bijlage 250473.png
Figuur 5.4 Modellering van de dwarsdoorsnede van een standaard talud.

Als de werkelijke horizontale afstanden van het talud (andere taludbreedte, andere helling) meer dan 0,5 m afwijken van dit standaard talud, hanteer dan op overeenkomstige wijze de werkelijke afstanden.

5.3.5. Overwegen

[Regeling vervallen per 01-01-2024]

Modelleer het deel van de spoorweg waarin zich een overweg bevindt met de betreffende bovenbouwconstructie en een hard bodemgebied.

5.3.6. Tunnelbakken

[Regeling vervallen per 01-01-2024]

Modelleer de hoogte van de wanden van open tunnelbakken, de lokale maaiveldhoogte en de afstanden overeenkomstig de werkelijkheid en de bodem van de tunnelbak 0,2 m onder de bovenkant van het spoor (BS). Modelleer de wanden als absorberende schermen met een scherpe tophoek (Cp = 0 dB). De bovenbouwcorrectie volgt uit de toegepaste bovenbouwconstructie.

Bij een open tunnelbak met geluidsabsorberende wanden (zie paragraaf 5.3.10) bevinden de bronlijnen zich op de voorgeschreven hoogten ten opzichte van BS.

Bij een open tunnelbak zonder geluidsabsorberend beklede wanden worden de bronlijnen die lager liggen dan de bovenrand van de tunnelbak op de hoogte van die rand gemodelleerd of zoveel lager als de hoogte van het dak van het spoorvoertuig. Dit betekent in de praktijk een maximale verhoging met 4,0 m.

Over het traject van de tunnel zelf worden geen bronlijnen gemodelleerd.

5.3.7. Geluidschermen en afschermende objecten

[Regeling vervallen per 01-01-2024]

Om als afschermend object te worden aangemerkt moet het object:

  • voldoende geluidsisolatie hebben, d.w.z. dat de isolatie 10 dB hoger is dan de afschermende werking (een massa van 40 kg/m2 is in ieder geval voldoende) en er bevinden zich geen grote kieren en openingen inhet object;

  • een zichthoek hebben die ten minste gelijk is aan de openingshoek van de beschouwde sector.

Geluidsschermen nabij het spoor zijn aan de spoorzijde bij voorkeur geluidsabsorberend uitgevoerd. In paragraaf 5.3.10 is beschreven wanneer een scherm als geluidsabsorberend mag worden aangemerkt.

Voor berekening van de effecten van geluidsschermen wordt bij de modellering met de octaafbandrekenmethode altijd uitgegaan van een 100% absorberend scherm. Reflecterende of deels reflecterende geluidsschermen nabij het spoor worden ook als geluidsabsorberende schermen gemodelleerd met een nader bepaalde effectieve hoogte. De te modelleren effectieve hoogte van het scherm boven de bovenkant van het spoor (BS) wordt als volgt bepaald:

Bijlage 250474.png

of:

Bijlage 250475.png

Hierin is:

hs,eff: effectieve schermhoogte t.o.v. BS t.b.v. de modellering;

hs: werkelijke hoogte van het geluidsscherm t.o.v. BS;

a: fractie van het scherm dat geluidsabsorberend uitgevoerd is.

Formule 5.2 is toepasbaar voor:

  • geheel absorberende schermen;

  • (deels) reflecterende rechte schermen die hellend naar de baan toe zijn geplaatst onder een hoek van ten minste 15 graden bij het spoor op ballastbed. Als het spoor niet op ballastbed is uitgevoerd, wordt in het overdrachtsgebied tussen de bron en het scherm een zelfde hoeveelheid geluidsabsorptie bewerkstelligd als in het geval van een spoor op ballastbed optreedt. Voorwaarde hierbij is dat aan de overzijde van het spoor geen reflecterend scherm is geplaatst.

Formule 5.3 is toepasbaar voor:

  • alle overige situaties met geheel of gedeeltelijk geluidsreflecterende schermen. Deze benadering is conservatief.

De feitelijke schermwerking is waarschijnlijk geringer dan zou worden berekend voor schermen die hoger zijn dan 4,0 meter ten opzichte van BS. Voor deze schermen wordt een nader onderzoek verricht.

Een scherm wordt altijd gemodelleerd alsof het recht is en verticaal staat, ook als het in de werkelijkheid bijvoorbeeld gekromd is uitgevoerd, of scheef wordt geplaatst. De bovenkant van het geluidsscherm in het model wordt gelegd op de positie van de diffractierand van het werkelijke scherm. Vervolgens past men bovenbeschreven methode toe voor het bepalen van de effectieve schermhoogte.

5.3.8. Perrons

[Regeling vervallen per 01-01-2024]

De perronhoogte is 0,8 meter boven bovenkant van het spoor (BS). Modelleer perrons met twee absorberende stompe schermen ter plaatse van de randen van het perron, waarbij de rand nabij het spoor zich op 2,0 m afstand uit het hart van het spoor bevindt. Voor het scherm nabij het spoor wordt de bodem onder het spoor (–0,2 meter BS) als plaatselijke maaiveldhoogte gehanteerd. De toe te passen profielafhankelijke correctieterm Cp voor elk van de schermen is afhankelijk van het al dan niet aanwezig zijn van een geluidsabsorberende bekleding (zie tabel 5.4 en 5.3.10). Perrons die aan beide zijden open zijn (d.w.z. geen zijwanden aan spoorzijde en buitenzijde) worden niet als scherm gemodelleerd. Perrons die alleen aan de spoorzijde open zijn mogen als geluidsabsorberend worden aangemerkt.

5.3.9. Kunstwerken

[Regeling vervallen per 01-01-2024]

Modelleer de hoogten en afstanden bij kunstwerken overeenkomstig de werkelijkheid. Kies het type bovenbouwconstructie overeenkomstig paragraaf 3.5.

Bij ontbreken van absorptie op het kunstwerk wordt het gehele brugdek als hard bodemgebied gemodelleerd. Bij spoor op ballast bed of een volgestort spoor met minimaal 15 cm ballast wordt het gehele brugdek als absorberend bodemgebied gemodelleerd, tenzij harde delen van het brugdek breder zijn dan 1 meter. Dan worden die betreffende delen als hard bodemgebied gemodelleerd. Bij stalen bruggen wordt het brugdeel als absorberend bodemgebied gemodelleerd.

Modelleer bij plaatbruggen, TT-liggerbruggen en kokerliggerbruggen de rand van de brug als absorberend stomp scherm (zie tabel 5.4 en paragraaf 5.3.10).

Modelleer bij trogliggerbruggen en bij een M-baanconstructie de rand met twee absorberende stompe schermen ter plaatse van de beide zijden van de rand. Voor het scherm nabij het spoor wordt de bodem onder het spoor (–0,2 meter BS) als plaatselijke maaiveldhoogte gehanteerd. De toe te passen profielafhankelijke correctieterm Cp voor elk van de schermen is afhankelijk van het al dan niet aanwezig zijn van een geluidsabsorberende bekleding (zie tabel 5.4 en paragraaf 5.3.10).

Bij betonnen kunstwerken kunnen schermen op het kunstwerk tot een hoogte van 2,0 meter boven bovenkant van het spoor (BS) overeenkomstig de uitvoering van die schermen worden gemodelleerd. Bij hogere schermen kan de directe geluidsafstraling van het kunstwerk een zodanige bijdrage gaan leveren dat berekeningen niet zonder meer mogelijk zijn en een nader akoestisch onderzoek nodig is.

Bij stalen bruggen met schermen kan het effect van de schermen niet worden berekend, doch wordt de brugtoeslag bepaald voor de brug met scherm.

5.3.10. Geluidabsorberende uitvoering

[Regeling vervallen per 01-01-2024]

Bekleding of uitvoering van objecten als schermen, perrons en tunnelwanden is als geluidabsorberend te beschouwen indien de spoorspecifieke absorptie groter dan of gelijk aan 5 dB is. De bepaling van deze absorptie is in paragraaf 5.7 verder uitgelegd.

5.3.11. Reflecties

[Regeling vervallen per 01-01-2024]

Indien zich binnen een sector objecten bevinden, die voldoen aan de hieronder gestelde voorwaarden, dan wordt het LAeq mede bepaald door het geluid dat via reflecties het waarneempunt bereikt.

De bijdrage van reflecties aan het LAeq wordt in rekening gebracht door het sectordeel dat zich, gezien vanuit het waarneempunt, voor dat reflecterend oppervlak bevindt, te vervangen door zijn spiegelbeeld ten opzichte van het reflecterend oppervlak.

Om als reflecterend oppervlak te worden aangemerkt:

  • is het vlak verticaal;

  • heeft het vlak een zichthoek van 2° of meer;

  • steekt het vlak over de hele sectorhoek ten minste twee meter boven het maaiveld uit;

  • heeft het vlak een absorptiecoëfficiënt < 0,8;

  • staat het vlak op zodanige afstand van het spoor dat afscherming en reflectie van de passerende spoorvoertuig kunnen worden verwaarloosd.

Nader onderzoek naar de invloed van reflecties op het LAeq is vereist indien:

  • het reflecterend oppervlak een grotere hoek met de verticaal maakt dan 5 graden, met uitzondering van hellende geluidsschermen zoals omschreven in paragraaf 5.3.7;

  • het reflecterend oppervlak oneffenheden bevat waarvan de afmetingen van dezelfde orde van grootte zijn als de afstand van het vlak tot het waarneempunt of de afstand van het vlak tot het bronpunt.

Bij de berekeningen wordt standaard uitgegaan van 1 reflectie. In geval van berekeningen met meervoudige reflecties wordt de spiegeling herhaald toegepast.

5.3.12. Woningen en waarneempunten

[Regeling vervallen per 01-01-2024]

De gemiddelde verdiepingshoogte van woningen wordt gesteld op 3 meter. Een schuine kap wordt hierbij meegenomen als een volledige verdiepingshoogte. De modellering van een schuine kap als recht blok mag echter niet leiden tot niet reële reflecties naar waarneempunten.

Waarneempunten voor gebouwen worden ten minste gekozen ter hoogte van de eerste verdieping (dit is een hoogte van 5 meter boven plaatselijk maaiveld) en bij woongebouwen met drie of meer woonlagen ter hoogte van de bovenste verdieping (dit is 1 meter onder de nok van het gebouw). Daarnaast kan voor de begane grond, de beoordeling van het buitenklimaat en de beoordeling van de effecten van schermen een waarneempunt op 1,5 meter boven plaatselijk maaiveld worden gekozen.

Waarneempunten worden zo gemodelleerd dat reflecties tegen de gevel waarvoor het punt geplaatst is geen bijdrage leveren aan het geluid(druk)niveau.

Objecten voor de eerste lijn bebouwing hoger dan 1 meter boven bovenkant van het spoor (BS) dienen te worden gemodelleerd. Verder moeten kleine objecten als erkers en schuurtjes buiten beschouwing worden gelaten.

5.4. De geometrische uitbreidingsterm ∆LGU

[Regeling vervallen per 01-01-2024]

Voor de berekening van de geometrische uitbreidingsterm zijn de volgende gegevens nodig:

r: de afstand tussen bron- en waarneempunt, gemeten langs de kortste verbindingslijn [m];

v: de hoek die het sectorvlak maakt met het bronlijnsegment [in graden];

Ф: de openingshoek van de sector [in graden].

De berekening van ∆LGU verloopt als volgt:

voor een dipooluitbreiding:

Bijlage 250476.png

voor een monopooluitbreiding:

Bijlage 250477.png

De dipooluitbreiding wordt gebruikt voor de uitbreiding van het rolgeluid, terwijl in specifieke gevallen, zoals bij de uitbreiding van het kunstwerkaandeel van een brug de monopooluitbreiding wordt gebruikt. Zie paragraaf 6.2.

Als de hoek v een waarde aanneemt die kleiner is dan de openingshoek van de betreffende sector is nader onderzoek vereist ter bepaling van ∆LGU.

5.5. De overdrachtsverzwakking ∆LOD

[Regeling vervallen per 01-01-2024]

De overdrachtsverzwakking ∆LOD is samengesteld uit de volgende termen:

Bijlage 250478.png

waarin DL de verzwakking door absorptie in de lucht voorstelt, DB de verzwakking ten gevolge van de bodeminvloed en CM de meteocorrectieterm.

5.5.1. De luchtdemping DL

[Regeling vervallen per 01-01-2024]

Voor de berekening van DL is het volgende gegeven nodig:

r: de afstand tussen bron- en waarneempunt, gemeten langs de kortste verbindingslijn [m].

De berekening verloopt als volgt:

Bijlage 250479.png

waarbij δlucht de luchtdempingscoëfficiënt is. De waarde van δlucht wordt gegeven in tabel 5.1.

Tabel 5.1 De luchtdempingscoëfficiënt δlucht als functie van de octaafband (i)

Octaafbandindex

Octaafband middenfrequentie

[Hz]

δlucht

[dB/m]

1

63

0

2

125

0

3

250

0,001

4

500

0,002

5

1000

0,004

6

2000

0,010

7

4000

0,023

8

8000

0,058

5.5.2 De bodemdemping DB

[Regeling vervallen per 01-01-2024]

Bij de bepaling van de bodemdemping DB wordt de horizontaal gemeten afstand tussen bron- en waarneempunt (symbool ro) verdeeld in drie afzonderlijke delen: een brongebied, een waarneemgebied en een middengebied.

Het brongebied heeft een lengte van 15 meter, de lengte van het waarneemgebied bedraagt 70 meter. Het resterende gedeelte van de afstand ro tussen bron- en waarneempunt is het middengebied.

Indien de afstand ro kleiner is dan 85 meter is de lengte van het middengebied nihil.

Indien de afstand ro kleiner is dan 70 meter dan is de lengte van het waarneemgebied gelijk aan de afstand ro.

Indien de afstand ro kleiner is dan 15 meter dan is de lengte van het brongebied en de lengte van het waarneemgebied elk gelijk aan de afstand ro.

Voor elk van de drie gebieden wordt de (bodem)absorptiefractie vastgesteld.

De absorptiefractie is het quotiënt van de lengte van het betreffend gebied dat niet akoestisch hard is en de totale lengte van het betreffend gebied. Als de lengte van het middengebied nihil is, wordt de absorptiefractie op één gesteld.

Voor de berekening van de bodemdemping zijn de volgende gegevens nodig:

ro: de horizontaal gemeten afstand tussen bron en waarneempunt [m];

hb: de hoogte van het bronpunt boven de gemiddelde maaiveldhoogte in het brongebied [m];

hw: de hoogte van het waarneempunt boven de gemiddelde maaiveldhoogte in het waarneemgebied [m];

Bb: de absorptiefractie van het brongebied [–];

Bm: de absorptiefractie van het middengebied [–];

Bw: de absorptiefractie van het waarneemgebied [–];

Sw: effectiviteit van de bodemdemping in het waarneemgebied [–];

Sb: effectiviteit van de bodemdemping in het brongebied [–].

Als hb kleiner is dan nul, wordt voor hb de waarde nul aangehouden; hetzelfde geldt voor hw. Als in de betreffende sector geen afscherming in rekening wordt gebracht, geldt dat Sw en Sb beide de waarde één aannemen. In geval van afscherming worden Sw en Sb berekend volgens de formules 5.11a en 5.11b in paragraaf 5.6.

De berekening verloopt volgens de formules 5.7a t/m h als gegeven in tabel 5.2.

Tabel 5.2 De formules 5.7a t/m h voor de bepaling van bodemdemping Db als functie van de octaafband (i). De cursief gedrukte symbolen vormen de waarden die voor de variabelen x en y moeten worden vervangen in de functie (x,y).

Octaafbandindex

Octaafband middenfrequentie [Hz]

Bodemdemping DB [dB]

1

63

– 3γo(hb+hw,ro) – 6

2

125

[Sbγ2(hb,ro)+1]Bb – 3(1–Bm) γo(hb+hw,ro) +[Swγ2(hw,ro)+1]Bw – 2

3

250

[Sbγ3(hb,ro)+1]Bb – 3(1–Bm) γo(hb+hw,ro) +[Swγ3(hw,ro)+1]Bw – 2

4

500

[Sbγ4(hb,ro)+1]Bb – 3(1–Bm) γo(hb+hw,ro) +[Swγ4(hw,ro)+1]Bw – 2

5

1000

[Sbγ5(hb,ro)+1]Bb – 3(1–Bm) γo(hb+hw,ro) +[Swγ5(hw,ro)+1]Bw – 2

6

2000

Bb – 3(1–Bm)γo(hb+hw,ro) + Bw – 2

7

4000

Bb – 3(1–Bm)γo(hb+hw,ro) + Bw – 2

8

8000

Bb – 3(1–Bm)γo(hb+hw,ro) + Bw – 2

De functies γ zijn als volgt gedefinieerd:

Bijlage 250480.png
Bijlage 250481.png

Voor de variabelen x en y worden de waarden van de grootheden vervangen die tussen haakjes achter de overeenkomstige functies uit de formules 5.7a t/m h zijn geplaatst (in cursief).

5.5.3 De meteocorrectieterm CM

[Regeling vervallen per 01-01-2024]

Voor de berekening van de meteocorrectieterm CM zijn de volgende gegevens nodig:

ro: de horizontaal gemeten afstand tussen bron en waarneempunt [m];

hb: de hoogte van het bronpunt boven de gemiddelde maaiveldhoogte in het brongebied [m];

hw: de hoogte van het waarneempunt boven de gemiddelde maaiveldhoogte in het waarneemgebied [m].

De berekening verloopt als volgt:

Bijlage 250482.png

5.6. De schermwerking ∆LSW(incl. de termen Sw en Sb uit de bodemdempingsformules 5.15a t/m h).

[Regeling vervallen per 01-01-2024]

Indien zich binnen een sector objecten bevinden waarvan de zichthoek ten minste samenvalt met de openingshoek van de betreffende sector en waarvan tevens in redelijkheid te verwachten is dat die de geluidsoverdracht zullen belemmeren, wordt de schermwerking ∆LSW samen met een verminderde bodemdemping (vervat in de termen Sw en Sb uit formule 5.7) in rekening gebracht.

De berekeningsformule van de afscherming van een willekeurig gevormd object bevat drie termen.

De eerste term beschrijft de afscherming van een equivalent ideaal scherm (een dun, verticaal vlak). De hoogte van het equivalente scherm is gelijk aan de grootste hoogte van het obstakel. De bovenrand van het equivalente scherm valt samen met de bovenrand van het object. Als op grond hiervan meerdere locaties van het equivalente scherm mogelijk zijn, wordt hieruit die locatie gekozen die maximale schermwerking tot gevolg heeft.

De tweede term is alleen van belang als het scherm een diffractor heeft als schermtop. De afscherming van een object is dan de afscherming plus de extra afscherming door de diffractor.

De derde term is alleen van belang als het profiel, dat wil zeggen de doorsnede in het sectorvlak, van het afschermende object afwijkt van dat van het ideale scherm. De afscherming van het object is gelijk aan de afscherming van het equivalente scherm verminderd met een profielafhankelijke correctieterm Cp.

Als er meerdere afschermende objecten in een sector aanwezig zijn, wordt alleen het object in rekening gebracht dat, bij afwezigheid van de andere, de grootste afscherming zou geven.

Voor de berekening van de afschermende effecten zijn de volgende gegevens nodig:

zb: de hoogte van de bron ten opzichte van het referentiepeil (= horizontaal vlak waarin z = 0) [m];

zw: de hoogte van het waarneempunt ten opzichte van het referentiepeil [m];

zT: de hoogte van de top van de afscherming ten opzichte van het referentiepeil [m];

hb: de hoogte van het bronpunt boven de gemiddelde maaiveldhoogte van het brongebied [m];

hw: de hoogte van het waarneempunt boven de gemiddelde maaiveldhoogte in het waarneemgebied [m];

hT: de hoogte van de top van de afscherming ten opzichte van de gemiddelde maaiveldhoogte binnen een strook van 5 m vanaf het scherm. Indien aan beide zijden van de afscherming verschillend, de grootste waarde van hT nemen [m];

r: de afstand tussen bron- en waarneempunt, gemeten langs de kortste verbindingslijn [m];

rw: de horizontaal gemeten afstand tussen waarneempunt en scherm [m];

ro: de horizontaal gemeten afstand tussen waarneem en bronpunt [m];

–: het profiel van het afschermend object.

Berekend wordt:

  • de verminderde bodemdemping zoals verdisconteerd in de factoren Sw en Sb uit formules 5.7a tot en met 5.7h van paragraaf 5.5.2.

  • de schermwerking ∆LSW.

Bijlage 250483.png
Figuur 5.5 Een sectorvlak met een ideaal scherm, waarop de punten K, T en L zijn aangegeven.

Voor de berekening wordt op het scherm een drietal punten gedefinieerd (zie figuur 5.5):

K: Het snijpunt van het scherm met de zichtlijn (= rechte tussen bron- en waarneempunt).

L: Het snijpunt van het scherm met een gekromde geluidsstraal die onder meewindcondities van bron- naar waarneempunt loopt.

T: De top van het scherm.

De gebroken lijn BLW is een schematisering van de gekromde geluidsstraal onder meewindcondities.

Deze drie punten bevinden zich op de respectievelijke hoogten zK, zL en zT boven het referentiepeil. Voor de afstand tussen de punten K en L geldt:

Bijlage 250484.png

Verder geldt:

rL is de som van de lengtes van de lijnstukken BL en LW

rT is de som van de lengtes van de lijnstukken BT en TW.

De factoren Sw en Sb uit formules 5.7a t/m f worden als volgt berekend:

Bijlage 250485.png
Bijlage 250486.png

waarin he de effectieve schermhoogte is, gedefinieerd als:

Bijlage 250487.png

De schermwerking ∆LSW wordt als volgt berekend:

Bijlage 268981.png

waarin H de effectiviteit van het scherm is en F(Nf) een functie met argument Nf (het fresnelgetal). De term CS,diff is de correctieterm voor een scherm met een diffractor als schermtop en Cp is de profielafhankelijke correctieterm. Als de schermwerking ∆LSW op grond van formule 5.13 negatief wordt, wordt de waarde ∆LSW = 0 aangehouden.

De waarde van de correctieterm voor een diffractor op scherm CS,diff volgt uit de methode beschreven in hoofdstuk 7.

Bijlage 250489.png

i is hierin de octaafbandindex. De maximale waarde van H is 1.

De definitie van de functie F is gegeven in de formules 5.15a t/m f uit tabel 5.3. De waarden van Cp volgen uit tabel 5.4.

Tabel 5.3 De definitie van de functie F met als variabele Nf voor vijf intervallen van Nf (formules 5.15a t/m f)

Geldig in het interval van Nf

Definitie F(Nf)

van

tot

 

– ∞

–0,314

0

–0,314

–0,0016

–3,682 –9,288 lg |Nf| –4,482 lg2 |Nf|

–1,170 lg3 |Nf| – 0,128 lg4 |Nf|

–0,0016

+0,0016

5

+0,0016

+1,0

12,909 + 7,495 lg Nf +2,612 lg2 Nf

+0,073 lg3 Nf –0,184 lg4 Nf –0,032 lg5 Nf

+1,0

+16,1845

12,909 + 10 lg Nf

+16,1845

+ ∞

25

Tabel 5.4 De profielafhankelijke correctieterm Cp. T is de tophoek van de dwarsdoorsnede van het object.

Cp

Object (T = tophoek in graden)

0 dB

– dunne wanden waarvan de hoek met de verticaal ≤ 20°

– grondlichaam met 0°≤ T ≤ 70°

– alle grondlichamen met daarop een dunne wand, als de totale constructiehoogte minder is dan twee maal de hoogte van die wand of als de wand hoger is dan 3,5m

– alle gebouwen

– bij toepassing van een diffractor op een scherm waarvan het effect met de correctieterm CS,diff in rekening wordt gebracht

2 dB

– rand van aarden baan in ophoging

– grondlichaam met 70° ≤ T ≤ 165°

– alle grondlichamen met daarop een dunne wand, als de totale constructiehoogte meer bedraagt dan twee maal de hoogte van die wand en de wand niet hoger is dan 3,5m

– geluidabsorberende1 rand aan spoorzijde van perron

– rand aan niet-spoorzijde van perron

– rand van baan op een viaduct of brug, anders dan trogliggerbrug of M-baan

– geluidabsorberende1 rand aan spoorzijde van trogliggerbrug

– rand aan niet-spoorzijde van trogliggerbrug

– geluidabsorberende1 rand aan spoorzijde van M-baan

– rand aan niet-spoorwegzijde van M-baan

5 dB

– rand (niet geluidabsorberend1 aan spoorzijde van perron

– rand (niet geluidabsorberend1 aan spoorzijde van trogliggerbrug

– rand (niet geluidabsorberend1 aan spoorzijde van M-baan

1Zie 5.3.10.

Nf wordt als volgt bepaald:

Bijlage 250490.png

met ε de ‘akoestische omweg’, die wordt gedefinieerd als:

Bijlage 250491.png

In de gevallen waarin het profiel van het afschermend object niet overeenkomt met een van de in tabel 5.4 genoemde profielen wordt een nader onderzoek naar de schermwerking van dat object verricht.

Indien de spoorspecifieke geluidisolatie van de afscherming minder dan 10 dB groter is dan de berekende schermwerking ∆LSW is nader onderzoek vereist naar de totale geluidsreducerende werking van de afscherming.

5.7. Bepaling spoorspecifieke absorptie

[Regeling vervallen per 01-01-2024]

De absorptiecoëfficiënten worden bepaald overeenkomtig NEN 20354. De bepaalde absorptiecoëfficiënten in tertsbanden worden gewogen gemiddeld, waarbij een gemiddeld A-gewogen tertsbandspectrum van de spoorverkeersspectra als weging wordt gebruikt, zie tabel 5.5.

Tabel 5.5 A-gewogen en op 0 dB genormeerd spectrum voor spoorverkeergeluid ten behoeve van de berekening van een ééngetalswaarde in dB voor de spoorspecifieke absorptie en spoorspecifieke geluidisolatie van geluidschermen.
 

spoorverkeer

terts

spectrum (dB)

spectrum (dB)

100

125

160

–16,2

–24,0

–21,0

–19,2

200

250

315

–10,0

–17,0

–15,0

–13,2

400

500

630

–6,1

–11,7

–10,8

–10,4

800

1000

1250

–4,9

–10,0

–9,7

–9,4

1600

2000

2500

–5,0

–9,4

–9,4

–10,6

3150

4000

5000

–15,0

–17,1

–21,0

–24,0

De spoorspecifieke absorptie DLα,rail wordt bepaald volgens:

Bijlage 250492.png

waarbij de ratio van de sommen maximaal 0,99 is.

DLα,rail wordt afgerond op gehele dB's en heeft een maximale waarde van 20 dB. Het eisen van een spoorspecifieke absorptie met een waarde hoger dan 10 dB zal in het algemeen niet zinvol zijn.

5.8. Bepaling spoorspecifieke geluidisolatie

[Regeling vervallen per 01-01-2024]

De geluidisolatie wordt bepaald overeenkomstig NEN-EN ISO 140-3. De bepaalde geluidisolatie R in terstbanden worden gewogen gemiddeld, waarbij een gemiddeld A-gewogen tertsbandspectrum van spoorverkeersgeluid als weging wordt gebruikt. Zie tabel 5.5. Bij de meting wordt voor wegverkeer het gehele scherm inclusief steunconstructies betrokken.

De spoorspecifieke geluidisolatie DLR,rail wordt bepaald volgens:

Bijlage 250493.png

DLR,rail wordt afgerond op gehele dB’s.

Bij schermen met een hoogte van 2 meter boven BS bedraagt de spoorverkeerspecifieke geluidisolatie ten minste 25 dB, bij 4 meter hoge schermen is dat 30 dB.

5.9. De niveaureductie ten gevolge van reflecties LR

[Regeling vervallen per 01-01-2024]

Voor de berekening van de niveaureductie ten gevolge van de absorptie die optreedt bij reflecties zijn de volgende gegevens nodig:

Nref: het aantal reflecties (zie ook paragraaf 5.3) tussen bron en waarneempunt [–]

–: type reflecterend object.

De berekening verloopt als volgt:

Bijlage 250494.png

waarin δref de niveaureductie ten gevolge van één reflectie is. Voor gebouwen geldt voor alle octaafbanden δref = –10 lg 0,8. Voor alle andere objecten is δref = 1 voor alle octaafbanden, tenzij het object aantoonbaar geluidabsorberend is uitgevoerd. In dat geval geldt per octaafband δref = –10 lg (1 – α), waarin α de geluidabsorptiecoëfficiënt van het object is in de betreffende octaafband. Nref kan ten hoogste de waarde 1 aannemen.

5.10. Het octaafbandspectrum van het equivalente geluidniveau

[Regeling vervallen per 01-01-2024]

Het A gewogen equivalente geluidsniveau in octaafband i, symbool Leq,i, wordt gegeven door:

Bijlage 250495.png

waarin de betekenis van de grootheden en de uitwerking ervan analoog zijn aan die van formule 5.1a.

6. Meetmethoden

[Regeling vervallen per 01-01-2024]

6.1. Bepaling overdrachtsverzwakking

[Regeling vervallen per 01-01-2024]

Bij gebruik van de meetmethode ter bepaling van het equivalente geluidsniveau wordt de emissie bepaald door middel van berekening en de overdrachtsverzwakking door middel van meting. Hierbij wordt uitgegaan van de volgende formule:

Bijlage 250496.png

waarbij:

LAeq,ref: het volgens hoofdstuk 4 van deze bijlage berekende equivalente geluidsniveau op een referentiemeetpunt [dB];

ΔLAE: het gemiddelde verschil tussen aan dezelfde spoorvoertuig-passages gemeten sound exposure levels op het referentiemeetpunt en het waarneempunt [dB].

Hoewel de meeste moderne meetapparaten beschikken over de mogelijkheid om sound-exposure levels te bepalen, kan het voorkomen dat slechts het equivalente geluidsniveau per passage kan worden gemeten. LAE kan dan worden verkregen door het LAeq te corrigeren voor de registratieduur van de passage (Tp, uitgedrukt in seconden) volgens de volgende formule:

Bijlage 250497.png

6.2. Methode voor meting en modellering van stalen kunstwerken

[Regeling vervallen per 01-01-2024]

6.2.1. Inleiding

[Regeling vervallen per 01-01-2024]

Het rijden over een stalen kunstwerk zal in het algemeen leiden tot een toename van de geluidemissie. Deze toename wordt veroorzaakt door enerzijds een toename van het rolgeluid van het spoorvoertuig en anderzijds de geluidafstraling van het stalen kunstwerk zelf. Bij stalen kunstwerken wordt in de rekenmethode deze toename van de emissie gekarakteriseerd door een geluidemissietoeslag. Zie paragraaf 3.5.2. De geluidafstraling van het kunstwerk wordt per rijlijn apart in rekening gebracht door middel van het modelleren van twee bronlijnen. Behalve de bronlijn voor het rolgeluid wordt een tweede bronlijn gepositioneerd in het hart van elke rijlijn op het kunstwerk. De afstraalkarakteristiek van het kunstwerk vertoont verschillen met de afstraalkarakteristiek van het rolgeluid. Daarom heeft de bronlijn voor het kunstwerk een andere geometrische uitbreidingsterm dan de bronlijn voor het rolgeluid.

Voor het uitvoeren van akoestisch onderzoek is het wenselijk de geluidemissietoeslag te beschrijven, onafhankelijk van de geometrische modellering van het kunstwerk en de naastliggende aarden baan.

In deze paragraaf wordt de bepaling en de modellering van deze geluidemissietoeslag in Standaardrekenmethode 2 uitgewerkt.

6.2.2. Geluidemissietoeslag

[Regeling vervallen per 01-01-2024]

De geluidemissietoeslag ΔLE,brug

is gedefinieerd als het verschil tussen de emissie van de door het kunstwerk beïnvloede bronnen en dezelfde bronnen zonder de invloed van het kunstwerk. Deze geluidemissietoeslag wordt bepaald per voertuigcategorie, per octaafband. Omwille van leesbaarheid zijn in de hierna gebruikte formules de indices voor voertuigcategorie c en oktaafband i weggelaten.

Bijlage 250498.png

De totale emissie op het kunstwerk is de energetische optelling van de rolgeluidemissie (inclusief de extra rolgeluidemissie ΔLE,brug-rol) op de bronlijnen op 0 en 0,5 meter van de bovenkant van het spoor (BS) en de emissie van het kunstwerk zelf op de bronlijn op 0m BS (LE,brug-kunstwerk).

Deze totale emissie van het kunstwerk wordt in het model gerepresenteerd door twee bronlijnen, namelijk een bronlijn voor het kunstwerk met emissie LE,brug-kunstwerk en een bronlijn voor het rolgeluid met emissie LE,brug-rol.

De emissie zonder de invloed van het kunstwerk is de energetische optelling van de rolgeluidbronnen alsof er geen geluidemissietoeslag is (dus zonder de ΔLE,brug-rol) en zonder kunstwerkgeluid en waarbij op de brug een bovenbouwcode bb=1 wordt gebruikt:

Bijlage 250499.png

6.2.3. Splitsing in rolgeluidtoename en kunstwerkgeluid

[Regeling vervallen per 01-01-2024]

De extra emissie vanwege de geluidemissietoeslag wordt gesplitst in twee delen: toename van het rolgeluid ΔLE,brug-rol) en kunstwerkgeluid (LE,brug-kunstwerk). De toename van het geluid wordt bij lage frequenties (tot 1 kHz) voornamelijk veroorzaakt door kunstwerkgeluid, bij hoge frequenties door rolgeluid. De splitsing van de geluidtoename wordt eenduidig vastgelegd met het empirische brugbijdragefilter Hbrug van figuur 6.1.

Bijlage 250500.png
Figuur 6.1 Spectrale karakteristiek van het filter om het brugaandeel uit het verschilspectrum te filteren.

Het gedeelte van de geluidemissie van de brug dat wordt toegekend aan het kunstwerk wordt hiermee:

Bijlage 250501.png

waarbij de correctiefactoren Hbrug worden gebruikt, zoals die zijn weergegeven in figuur 6.1. De rest van de geluidemissie van de brug bestaat uit het rolgeluid. Deze bestaat uit de emissie van brug zonder de invloed van de brug pus een toeslag op het rolgeluid Hrol:

Bijlage 250502.png

met

Bijlage 250503.png

Daarmee wordt de toeslag op het rolgeluid:

Bijlage 250504.png

Deze toeslag wordt opgeteld bij de rolgeluidbronnen op BS- en AS-hoogte, waarbij de bovenbouw wordt gemodelleerd met code bb=1.

6.2.4. Meettechnische bepaling van de geluidemissietoeslag

[Regeling vervallen per 01-01-2024]

Deze methode kan worden toegepast om de geluidemissietoeslag te bepalen uit vergelijkende immissiemetingen nabij de brug en nabij het spoor op normaal talud (aardebaan, bij voorkeur met bovenbouwconstructie bb=1). Het geluiddrukniveau van spoorvoertuigpassages wordt nabij de brug en nabij de aardebaan in één meetdoorsnede op gelijke afstand vanaf het hart van het spoor (HS) gemeten.

Voor het bepalen van de horizontale afstand tussen baan en microfoons worden de volgende punten in overweging genomen:

  • Vanwege nabijheidsveldeffecten bedraagt de meetafstand minimaal 1,5D vanaf het hart van de brug, waarbij D een karakteristieke voor de geluidafstraling relevante afmeting in de dwarsdoorsnede van de brug is, bijvoorbeeld de plaatafmeting van het brugdek of de breedte van de brug.

  • Vanwege de totale openingshoek bedraagt de meetafstand hoogstens de helft van de afstand van de meetdoorsnede tot elk van de uiteinden van de brug, gemeten langs de brug.

  • De meetafstand bedraagt ten minste 7,5 meter uit het hart van het dichtstbijgelegen spoor. Bij bruggen korter dan 30 meter wordt dus gemeten in het midden van de brug, waarbij rekening wordt gehouden met de beperkte lengte van de brug.

Om een te grote invloed van bodemeffecten op de aardebaan te voorkomen, wordt een meethoogte van 1,5 meter boven de bovenzijde van het spoor (BS) aanbevolen bij een meetafstand van 7,5 meter tot het HS. Bij een meetafstand van 25 meter wordt een hoogte van 3,5 meter aanbevolen.

Bij tussenliggende meetafstanden wordt tussen deze hoogtes geïnterpoleerd. Dit betekent dat de meethoogte zodanig wordt aangepast dat de ‘verticale zichthoek’ naar BS in de orde van 10° ligt.

Nabij de aardebaan wordt op één hoogte gemeten. Deze meethoogte noemen we h. Nabij de brug wordt op gemeten op twee hoogtes: +h BS en –h BS, waarbij de laagste meethoogte ten minste 1 m boven het op die locatie aanwezige bodemoppervlak ligt. De resultaten van deze metingen worden gemiddeld. Wanneer de resultaten van deze twee meetpunten bij de brug sterk uiteenlopen (richtlijn: meer dan 5 dB per octaafband) kan gerekend worden met de hoogste meetwaarden of wordt er nader akoestisch onderzoek uitgevoerd.

Bij de meting moet de representatieve operationele situatie worden onderzocht, dat wil zeggen de verdeling van gemeten spoorvoertuigen over de verschillende spoorvoertuigcategorieën en de gereden snelheid komt overeen met de maatgevende situatie ter plaatse. Bij meersporige bruggen met ‘gelijkwaardige sporen’ kan volstaan worden met een toeslagmeting voor het aanliggende spoor. Bij ‘niet-gelijkwaardige sporen’ dient de toeslag voor alle sporen afzonderlijk bepaald te worden.

Voor alle meetposities wordt per spoorvoertuigpassage per spoorvoertuigcategorie het equivalente geluidniveau bepaald door te middelen over de tijd waarin het niveau hoger is dan het maximale niveau minus 3 dB. De immissietoeslag per categorie ΔLI,brug,c,i volgt dan uit het lineair gemiddelde verschil tussen de beide geluidmeetposities over n (ten minste 5) passages:

Bijlage 250505.png

met:

c: index spoorvoertuigcategorie

i: index octaafband

k: volgnummer meting

L Aeq,br, c,i,k : meetresultaat bij de brug

L Aeq,ab ,c,i,k : meetresultaat bij de aardebaan

Het gemeten immissieverschil tussen brug en aarden baan wordt beïnvloed door twee factoren: het verschil in geluidemissie tussen een voertuig op de brug en hetzelfde voertuig op de baan en het verschil in overdrachtsverzwakking. Daarnaast kan, in het geval de bovenbouwconstructie afwijkt van bb=1 een correctie nodig zijn naar bovenbouwconstructie bb=1.

Dit betekent dat de gemeten immisietoeslag wordt gecorrigeerd met

Bijlage 250555.png

voor het verschil in overdrachtsverzwakking om een waarde te vinden voor de geluidemissietoeslag.

In het algemeen geldt:

Bijlage 250506.png

De waarde voor de correctie in overdrachtsverzwakking is slechts voor eenvoudige gevallen gemakkelijk te bepalen. Echter, als een akoestisch model wordt gemaakt van de meetsituatie dan kan

Bijlage 250554.png

iteratief worden bepaald. Dan wordt de volgende procedure gebruikt:

  • Veronderstel dat de geluidemissietoeslag precies gelijk is aan als de gemeten geluidimmissietoeslag:

    Bijlage 250552.png
  • Vervolgens wordt de procedure uit 6.2.2 doorlopen om kunstwerkgeluid en extra rolgeluid toe te kennen aan de bronnen op de brug. Op de brug wordt als bovenbouw bb=1 gemodelleerd.

  • Op de meetposities op de brug en de aarden baan worden de geluidimmissiespectra berekend. Het verschil tussen die twee geluidspectra noemen we

    Bijlage 250553.png
  • De correctie voor het verschil in overdrachtsverzwakking waar we naar op zoek zijn is vervolgens te bepalen met:

Bijlage 250523.png

Verdisconteren rijsnelheid

Naast geluiddrukniveaus wordt in beide meetdoorsnedes de rijsnelheid van de spoorvoertuig bepaald. Wanneer de snelheid tussen beide meetdoorsnedes meer dan 5% verschilt, wordt de aardebaanmeting gecorrigeerd met de emissieformules (zie 3.4). Wanneer dit verschil meer dan 25% bedraagt, is de meting niet bruikbaar voor de bepaling van de brugtoeslag.

Het brugtoeslagspectrum is afhankelijk van snelheid en spoorvoertuigcategorie. De brugtoeslag mag worden toegepast op dezelfde spoorvoertuigcategorie bij snelheden die maximaal 25% afwijken van de snelheid waarvoor de toeslag is bepaald.

Wanneer de brugtoeslag voor een bepaalde spoorvoertuigcategorie niet redelijkerwijs kan worden gemeten, wordt voor deze spoorvoertuigcategorie de brugtoeslag overgenomen van die spoorvoertuigcategorie die leidt tot de hoogste overall toeslag.

Verdisconteren railruwheid

In de directe omgeving van de meetdoorsnede aardebaan wordt de spoorstaafruwheid gemeten volgens de procedures omschreven in NEN-EN-ISO 3095:2005. Als de spoorstaafruwheid in de doorsnede van de aardebaan significant hoger is dan het landelijk gemiddelde spoorstaafruwheidsspectrum (zie tabel 3.7), moet òf een andere meetdoorsnede gekozen worden met een lagere spoorstaafruwheid, òf de meetwaarden moeten gecorrigeerd worden voor de hoge spoorstaafruwheid (zie paragraaf 3.4). Als de spoorstaafruwheid op de brug significant hoger is dan de referentie, wordt verondersteld dat dit representatief is voor de brug (tenzij er aanwijzingen zijn voor het tegendeel). In het algemeen zal de brugtoeslag dus niet gecorrigeerd worden voor de hoge spoorstaafruwheid. De brugtoeslag is dan dus deels het gevolg van de brugconstructie en deels van de hoge spoorstaafruwheid.

6.2.5. Modellering in SRM2

[Regeling vervallen per 01-01-2024]

Het bruggeluid wordt in SRM2 verwerkt als een toeslag op de emissieterm voor rolgeluid in combinatie met een extra bronlijn op het kunstwerk voor het bruggeluid.

De toename van het rolgeluid ΔLE,brug-rol wordt als extra emissieterm opgelegd aan de bronlijnen op 0 en 0,5 m van de bovenkant van het spoor (BS). Daarbij wordt de toename van de rolgeluidemissie in gelijke proporties verdeeld over deze twee bronlijnen. Dit noemen we de rolgeluidbron. De geluidemissie als gevolg van de geluidafstraling van het kunstwerk ΔLE,brug-kunstwerk wordt gemodelleerd met een bronlijn ter lengte van het kunstwerk in het hart van het spoor (HS) op 0 m BS. Dit noemen we de kunstwerkbron.

Voor de kunstwerkbron gelden enkele speciale modelleervoorschriften.

  • 1. De geometrische uitbreiding van de kunstwerkbron wordt beschreven met een monopooluitbreiding volgens formule 5.4b.

  • 2. Reeds aanwezige afscherming op de brug of op het talud direct aansluitend aan de het kunstwerk heeft geen invloed op deze bron. De afstraling van de brug wordt namelijk niet beïnvloed door op of vlakbij de brug staande schermen.

6.3. Methode in bijzondere omstandigheden

[Regeling vervallen per 01-01-2024]

In bijzondere omstandigheden waar de rekenmethoden van dit besluit of de hiervoor genoemde meetmethoden geen voldoende representatief resultaat zullen geven, wordt de methode volgens de Handleiding Meten en Rekenen Industrielawaai toegepast. Gedacht kan worden aan wachtsporen of situaties met zeer afwijkend materieel of bijzondere spoorconstructie etc. Ook het rechtstreeks vaststellen van de equivalente geluidsbelasting kan beschouwd worden als een bijzondere omstandigheid waarvoor van geval tot geval een meetprogramma dient te worden opgesteld.

6.4. Apparatuur

[Regeling vervallen per 01-01-2024]

Voor een meting van het equivalente geluidsniveau LAeq wordt beschikt over:

  • a. twee rondomgevoelige microfoons voorzien van windkap;

  • b. een akoestische ijkbron aangepast aan het gebruikte type microfoon;

  • c. een windrichtingsmeter;

  • d. een windsnelheidsmeter;

Voorts per microfoon:

  • e. een instrument waarmee de A-weging kan worden uitgevoerd (A-filter);

  • f. een instrument dat een directe uitlezing geeft van het geluidsniveau in dB;

  • g. een instrument dat het microfoonsignaal verwerkt tot een sound exposure level LAE als bedoeld in ISO 1996-1.

Combinaties van de onder a, e, f en g genoemde elementen kunnen tot één apparaat zijn samengevoegd.

De aan genoemde apparatuur gestelde eisen zijn:

  • a t/m d: de relevante eigenschappen voldoen ten minste aan de eisen voor het type 1 instrument zoals omschreven in de I.E.C.Publication nr. 651.

  • e: de akoestische ijkbron worden iedere twee jaar geijkt in een daartoe uitgerust laboratorium.

  • g: de windsnelheidsmeter heeft, inclusief aanspreekgevoeligheid, ten minste een nauwkeurigheid van 0,5 m/s in het bereik 0–3 m/s en een nauwkeurigheid van 1 m/s bij hogere windsnelheden.

6.5. Meteorologische randvoorwaarden

[Regeling vervallen per 01-01-2024]

Niet gemeten mag worden:

  • a. bij dichte mist (zicht ~ 200 m);

  • b. tijdens neerslag;

  • c. bij harde wind (gemeten windsnelheid > 15m/s op 10m hoogte);

  • d. als de akoestische eigenschappen van de spoorweg en de bodem tussen spoorweg en waarneempunt ten gevolge van bepaalde weersomstandigheden afwijken van de normale situatie;

  • e. als de weersomstandigheden niet voldoen aan het meteoraam als gegeven in tabel 6.1. Slechts voor relatief kleine afstanden (R < 10 (hb + hw)) is het meteoraam niet van toepassing, mits er geen sprake is van afscherming.

Onder afscherming wordt hier verstaan de situatie waarbij het zicht op de spoorweg vanuit het waarneempunt voor meer dan 30° wordt belemmerd. Hierbij wordt alleen gelet op objecten die zich binnen de openingshoek van de in het meteoraam toegestane windrichtingen bevinden.

Tabel 6.1 Het meteoraam waarin:

u: de gemiddelde windsnelheid tijdens de geluidsmeting, op 10 m hoogte in het open veld nabij de meetlocatie; de nauwkeurigheid waarmede u bepaald moet worden in 1 m/s voor u>2 m/s en 0,5 m/s voor kleinere u.

ϕ: de gemiddelde hoek tussen de gemiddelde windrichting tijdens de meting en de kortste verbindingslijn tussen het waarneempunt en de spoorweg.

meteorologische dag: de periode tussen 1 uur na zonsopgang en 1 uur voor zonsondergang.

meteorologische nacht: de periode tussen 1 uur voor zonsondergang en 1 uur na zonsopgang.

 

Toegestane windsnelheden

Toegestane windrichtingen

meteorologische dag

oktober t/m mei u>1 m/s

–80 < ϕ < +80 graden

juni t/m september u > 2 m/s

 

meteorologische nacht

u > 1 m/s

 
Bijlage 250524.png
Figuur 6.1 Definitie van de windrichtingshoek.

6.6. De meetplaats

[Regeling vervallen per 01-01-2024]

Het referentiemeetpunt wordt zodanig gekozen dat voldaan is aan de voorwaarden gesteld aan de berekening van het equivalente geluidsniveau volgens paragraaf 4.4 van dit voorschrift. Het punt wordt zo dicht mogelijk bij de spoorweg gesitueerd, doch niet dichterbij dan 25 meter.

Bij de keuze van het referentiemeetpunt wordt vermeden dat reflecties tegen gebouwen en andere obstakels het meetresultaat beïnvloeden.

Als de meting van LAE dient ter vaststelling van de geluidsbelasting van de gevel van een (nog) niet bestaand gebouw, moet de microfoon worden geplaatst in het geplande gevelvlak. Als de meting van LAE dient ter vaststelling van de geluidsbelasting van de gevel van een bestaand gebouw, moet de microfoon 2 m voor die gevel worden geplaatst. In dit geval wordt het gemeten equivalente geluidsniveau verminderd met 3 dB.

De directe omgeving van de microfoon en het gebied tussen de spoorweg en de microfoon is in normale toestand. Er bevinden zich geen niet permanente objecten, die van invloed zijn op het meetresultaat

De microfoon wordt met een zodanige constructie bevestigd dat tijdens de meting geen bewegingen mogelijk zijn. De constructie oefent geen invloed uit op het meetresultaat.

De microfoon is met zijn gevoeligste richting omhoog georiënteerd.

De meetprocedure

De verdeling van gemeten spoorvoertuigen over de verschillende spoorvoertuigcategorieën komt ongeveer overeen met de maatgevende verkeerssamenstelling op het betreffende spoorweggedeelte.

Het aantal spoorvoertuigpassages per meting bedraagt ten minste vijf.

De meetapparatuur wordt voor en na de meting geijkt met de ijkbron. Het verschil tussen beide ijkmetingen is niet groter dan 1 dB.

Andere geluiden dan van het spoorwegverkeer op het betreffende spoorweggedeelte mogen het meetresultaat niet zodanig beïnvloeden dat een afwijking van 0,5 dB of meer optreedt.

Het aantal metingen dat in een gegeven situatie noodzakelijk is, wordt gegeven in tabel 6.2. Wanneer volgens tabel 6.2 meer dan één meting is voorgeschreven moet elke meting op een andere dag worden uitgevoerd. Het eindresultaat in geval van meerdere metingen wordt gegeven door:

Bijlage 250525.png

waarin LAeq,j het volgens formule 6.1 voor meting j berekende equivalente geluidsniveau is. N is het aantal metingen dat in de betreffende situatie is vereist.

Tabel 6.2 Het minimum aantal metingen afhankelijk van afstand en aanwezigheid van afscherming.

afstand

Minimum aantal metingen

zonder afscherming

met afscherming

R > 10(hb + hw)

1

1

10 (hb + hw) < R ≤20(hb + hw)

1

2

20 (hb + hw) < R

2

3

6A. Reken- en meetregel diffractor

[Regeling vervallen per 01-01-2024]

6A.1. Inleiding

[Regeling vervallen per 01-01-2024]

In dit hoofdstuk wordt de rekenregel beschreven voor de bepaling van de correctieterm voor een diffractor als bedoeld in paragraaf 5.6 van deze bijlage. De in dit hoofdstuk beschreven CS,diff is alleen bedoeld voor een diffractor die als schermtop op een geluidscherm is toegepast.

6A.2. Rekenregel CS,diff

[Regeling vervallen per 01-01-2024]

  • 1. Voor de berekening van de formule van het diffractoreffect gelden de volgende definities:

    Ai,S,diff: de producteigenschap van de diffractor voor octaafbandindex i, bepaald volgens de meetmethode uit 7.3,

    Nf: het fresnelgetal.

  • 2. Het diffractoreffect wordt berekend met de volgende formule:

    Bijlage 268982.png
    Bijlage 268983.png
  • 3. Het fresnelgetal Nf wordt bepaald volgens de methode beschreven in hoofdstuk 5.6. Hierbij geldt:

    zB: de hoogte van de bron ten opzichte van het referentiepeil,

    zT: de hoogte van het scherm inclusief diffractor, ter plaatste van het diffractiepunt, ten opzichte van het referentiepeil,

    zW: de hoogte van het waarneempunt, ten opzichte van het referentiepeil.

6A.3. Meettechnische bepaling producteigenschappen van een diffractor op scherm

[Regeling vervallen per 01-01-2024]

6A.3.1. Meetmethode

[Regeling vervallen per 01-01-2024]

De producteigenschappen Ai,S,diff worden bepaald door metingen uit te voeren volgens de norm NEN-EN 1793-4:2015. Dit betreft het uitvoeren van geluidoverdrachtmetingen aan een testopstelling met een 4 meter hoog geluidscherm, met en zonder de diffractor.

Bij de meting met de diffractor op het scherm moet de geometrie van bron- en ontvangerposities worden opgehoogd met de extra hoogte van de diffractor. Deze extra hoogte moet expliciet worden opgenomen in de meetrapportage.

Het resultaat van de metingen is een zogenaamde diffractie index, die een maat is voor het extra effect van de schermtop, ten opzichte van het basisscherm zonder top.

Ten opzichte van NEN-EN 1793-4:2015 worden de volgende afwijkingen toegepast:

  • a. Metingen worden alleen uitgevoerd met een reflecterend scherm;

  • b. De uiteindelijke middeling van het diffractoreffect voor de verschillende meetposities wordt lineair in plaats van energetisch uitgevoerd.

Voor het middelen van de posities geldt het volgende. Eerst wordt voor iedere 1/3 octaafband (j) per hoek (h=0 of h=45 graden voor ieder van de meetposities (k=1 t/m 5) en bronhoogte (b=1 t/m 2) voor het scherm met diffractor (t=1) en scherm zonder diffractor (t=2) de diffractie index bepaald conform onderstaande formule.

Bijlage 268984.png

Vervolgens wordt per meetpunt k het verschil bepaald tussen DIj,k bepaald voor het scherm met diffractor en zonder diffractor volgens:

Bijlage 268985.png

Vervolgens vindt lineaire middeling plaats over alle meetposities k (5), hoeken h (2) en bronhoogtes b (2) volgens:

Bijlage 268986.png

Het effect per octaafband, Ai,S,diff, wordt berekend door de bijdrage van het diffractoreffect van de 1/3 octaafbandwaarden in de betrokken octaafband te wegen met het wegverkeerspectrum uit NEN-EN 1793-3:1997.

6A.3.2. Akoestisch rapport

[Regeling vervallen per 01-01-2024]

Van de metingen wordt een akoestisch rapport opgesteld conform de vereisten in de meetnorm EN 1793-4.

Aanvullend wordt de extra hoogte van bron- en ontvangerposities die is aangehouden bij de meting met de diffractor op het scherm vermeld.

7. Emissieregister

[Regeling vervallen per 01-01-2024]

Het emissieregister, bedoeld in artikel 4.3 van het Reken- en meetvoorschrift geluid 2012, bevat ten minste de volgende gegevens:

  • 1. een kaart met daarop aangegeven de ligging van de sporen die de emissieregisterbeheerder in beheer heeft;

  • 2. de contactgegevens van de beheerder van het emissieregister;

  • 3. een beschrijving van de sporen met begin en eindpunt en eventuele stations en haltes en de kilometrering daarvan;

  • 4. de verkeersintensiteiten per spoor in eenheden per uur, gemiddeld over een jaar, voor de dag, de avond en de nacht periode, onderscheiden naar remmende en niet remmende spoorvoertuigen en naar spoorvoertuigcategorie;

  • 5. de gemiddelde snelheden per spoorvoertuigcategorie, per traject, indien nodig per periode;

  • 6. per spoor de spoorconstructie en de daarin voorkomende kunstwerken, overwegen, wissels, en eventuele andere bijzonderheden;

  • 7. een overzicht van emissiekenmerken van spoorvoertuigen en spoorconstructies die niet behoren tot de spoorvoertuigcategorieën, zoals genoemd in paragraaf 1.2.

Deze gegevens zijn beschikbaar voor het jaar 1987 en voor ten minste de drie laatste jaren. Aangezien deze gegevens rechtstreeks moeten kunnen worden gebruikt voor akoestisch onderzoek, voldoen zij aan minimumeisen wat betreft nauwkeurigheid. Per hierboven bedoelde gegevenssoort zijn de minimumvereisten als volgt:

  • 1. Kaart

    De kaart legt een eenduidige koppeling tussen de gegevensverzameling, het spoortraject en de fysieke ligging.

  • 2. Sporen

    Begin en eind van elke spoor worden in meters nauwkeurig aangeduid. Bij een meersporig traject tevens een aanduiding om welk spoor het gaat. Voor wat betreft de ligging van de stations en haltes zijn begin en einde van de perrons aangegeven, alsmede de naam.

  • 3. Verkeersintensiteiten

    Het gebruik van het spoor wordt per spoor aangegeven, in eenheden per uur, af te ronden op 0,1 eenheid. De opgave geschiedt per spoorvoertuigcategorie zoals beschreven in hoofdstuk 1, over de dag, de avond en de nachtperiode.

  • 4. Snelheidsprofielen

    Per spoorvoertuigcategorie wordt aangeven met welke snelheden het traject – gemiddeld – over het jaar bereden wordt. Daarbij wordt aangegeven waar de spoorvoertuigen bij normale uitvoering van de dienstregeling van hun remmen gebruik maken. Indien het nodig is meerdere snelheidsprofielen te gebruiken, wordt aangegeven welk aandeel van de spoorvoertuigen van welk profiel gebruik maakt (zie ook: verkeersintensiteiten). Snelheden worden afgerond op ten hoogste 5 km/h.

  • 5. Bovenbouw

    De ligging – begin en eind – van de in hoofdstuk 1 beschreven constructies wordt aangegeven met een nauwkeurigheid van 1 meter. In zeer complexe situaties (meerdere wissels over afstanden minder dan 100 meter) kan volstaan worden met het aangeven van het aantal onderbrekingen over de complexe situatie, in afhankelijkheid van het totaal aantal wissels.

    Indien de ruwheid van het spoor afwijkt van het Nederlandse gemiddelde (zoals beschreven in tabel 3.6), wordt het begin en eind van de afwijking en de mate waarin dit optreedt aangegeven.

  • 6. Emissiekenmerken

    Als een nieuw type spoorvoertuig – elk spoorvoertuig dat niet kan worden ingedeeld in de elf categorieën zoals genoemd in paragraaf 1.2 – gebruik maakt van een gezoneerd spoor worden de emissiekarakteristieken bekend te zijn. Omdat de uitvoerder van het onderzoek verplicht is de resultaten aan de emissieregisterbeheerder op te sturen, kunnen deze in het register worden opgenomen.

  • 7. Schermen (niet verplicht)

    Indien de ligging van schermen in het emissieregister wordt opgenomen, dan dienen de volgende gegevens opgenomen te zijn:

    • begin en eind stand in meters

    • spoor waaraan scherm ligt

    • aanduiding of scherm links of rechts staat

    • hoogte in dm

  • 8. Hoogteligging

    De hoogteligging dient per minstens 100 meter spoor in dm boven NAP te zijn gegeven.

8. Toelichting reken- en meetvoorschrift

[Regeling vervallen per 01-01-2024]

8.1. Algemeen

[Regeling vervallen per 01-01-2024]

De belangrijkste wijziging van het onderdeel voor spoorverkeer is de actualisering van de emissie van geluid van hogesnelheidstreinen. Er is één set emissiekentallen opgenomen waarmee de emissie van geluid van alle hogesnelheidstreinen wordt beschreven. Er is onderzoek gedaan naar de emissie van het nieuwe materieel (V250) voor de HSL-Zuid. Bij dit onderzoek is ook de speciale bovenbouw (Rheda-spoor) betrokken.

Het overzicht van spoorvoertuigcategorieën is geactualiseerd. Voor de duidelijkheid is nu ook informatie opgenomen over het aantal rekeneenheden dat geldt voor een bepaald type trein.

In de bijlage is daarnaast een aantal wijzigingen doorgevoerd waarvoor eerder al onderzoek was uitgevoerd, zoals op het gebied van het effect van raildempers en van het effect van het (akoestisch) slijpen van de spoorstaven. Ook is een aantal fouten in formules verbeterd, onder andere de fouten die al in een erratum beschikbaar waren.

Ten slotte zijn wijzigingen doorgevoerd die er voor zorgen dat de methode zo goed mogelijk aansluit bij beschikbare informatie uit het register. Voorbeelden zijn de modellering van wissels en de geluidemissietoeslag voor stalen kunstwerken.

8.2. Begrippen

[Regeling vervallen per 01-01-2024]

De in het artikel gedefinieerde etmaalperiode betreft hetzij de periode 07.00–19.00 uur (dag), de periode 19.00–23.00 uur (avond) dan wel de periode 23.00–07.00 uur (nacht).

Het begrip rekeneenheid is hier geïntroduceerd om de bij de definitie van de verkeersintensiteit in het verleden vaak gehanteerde begrippen as- of draaistelintensiteit te vervangen. Dit is enerzijds gebeurd om de eenvoud te verhogen en anderzijds blijkt de nu gehanteerde definitie beter de geluidemissie te beschrijven. Bij getrokken treinen worden de locomotief in de rijtuigen (in geval van personentreinen) of de wagens (in geval van goederentreinen) alle aangemerkt als eenheden. Bij treinstellen dienen alle samenstellende delen te worden opgevat als eenheden. Het aantal assen of draaistellen per eenheid is bij de bepaling van de intensiteiten dus niet van belang.

Het akoestisch onderzoek richt, voor spoorwegen die niet op de geluidplafondkaart staan, zich op het maatgevende (dat wil zeggen het voor de geluidsbelasting bepalende) jaar en (in dat jaar) op het langtijdig equivalent geluidsniveau gedurende de dag-, de avond- en de nachtperiode. Het gemiddelde over deze drie perioden bepaalt de waarde van de geluidsbelasting in Lden. In de praktijk zal echter veelal voor een meer praktische benadering gekozen worden, die ook aansluit bij de bepaling van de geluidsbelasting in dB(A), zoals die plaatsvond voor de introductie van de Lden. Daarbij wordt uitgegaan van een periode die in akoestische zin, voor het gehele jaar representatief is. Voor zulk een periode (het representatieve tijdvak) wordt het zogenoemde langtijdig equivalent geluidsniveau bepaald. Indien de ene dag ten aanzien van verkeersintensiteiten en verkeerssamenstelling niet significant verschilt van een andere dag, behoeft het representatieve tijdvak niet langer dan een dag te zijn. Daar waar periodieke of andere variaties optreden met betrekking tot de treinenloop moeten langere tijdvakken worden beschouwd. Bij de gebruikelijke reizigersdiensten zal dit niet het geval zijn, maar goederenvervoer op het spoor kan van dag tot dag sterk verschillen. Daarom wordt met name voor goederenvervoer veelal uitgegaan van het aantal treinen gedurende een langere periode. De in het tijdvak van het voor de geluidsbelasting bepalende jaar optredende variabele intensiteiten worden rekenkundig gemiddeld tot een representatieve verkeersintensiteit: de verkeersintensiteit.

De representativiteit en bruikbaarheid van de resultaten van een akoestisch onderzoek staan of vallen met de realiteitswaarde van de gehanteerde verkeersvariabelen. De primaire eis die aan een akoestisch onderzoek moet worden gesteld, is dat het zo nauwkeurig mogelijk de (toekomstige) geluidsbelasting aanduidt. Dit zal slechts het geval zijn als niet alleen optimale aandacht wordt besteed aan de akoestische aspecten, zoals bodemdemping en reflectieinvloeden, maar als ook aan het onderzoek een deugdelijke opgave, meestal gebaseerd op een prognose, ten grondslag ligt. Voorkomen moet worden dat geluidwerende maatregelen, die aan de hand van de resultaten van een akoestisch onderzoek worden genomen, na enkele jaren onvoldoende effectief blijken te zijn, als de verkeersintensiteiten – en dus de geluidsbelastingen – hoger zijn dan aanvankelijk was geschat.

8.3. Spoorvoertuigcategorieën

[Regeling vervallen per 01-01-2024]

In deze bijlage is bepaald dat al het verkeer onder dienstregelingnummer over een gezoneerd spoor moet worden toegedeeld aan een van de genoemde spoorvoertuigcategorieën. Voor vrijwel alle van het Nederlandse net gebruikmakende spoorvoertuigen is dit al gebeurd en zijn de kenmerken vastgelegd in de vorm van emissiekentallen. In hoofdstuk 2 van deze bijlage zijn deze vermeld als dB-waarden, terwijl in hoofdstuk 3 deze emissiekentallen zijn opgenomen voor de octaafbanden. Van een groot aantal in Nederland gebruikte types bovenbouw zijn eveneens de kenmerken beschikbaar en opgenomen in hoofdstuk 2 en 3 van deze bijlage. Bij inzet van nieuw materieel kan dit worden toegekend aan een bestaande spoorvoertuigcategorie. Hiervoor moeten metingen worden gedaan volgens procedure A uit de Technische Regeling Emissiemeetmethoden Railverkeer 2006. Indien nieuw materieel niet kan worden ingedeeld in een van de spoorvoertuigcategorieën, bijvoorbeeld als het materieel stiller is dan de bestaande spoorvoertuigcategorieën, dan worden de nieuwe emissiekentallen volgens de procedure B uit de Technische Regeling Emissiemeetmethoden Railverkeer 2006 vastgesteld. Door een wijziging van deze bijlage kunnen de nieuwe emissiekentallen worden opgenomen in een nieuw te creëren spoorvoertuigcategorie.

8.4. Emissiegetallen (als bedoeld in hoofdstuk 2 en 3)

[Regeling vervallen per 01-01-2024]

De vaststelling van emissiegetallen vindt plaats per emissietraject, dat wil zeggen per spoorweggedeelte waarover de emissie van spoorvoertuiggeluid min of meer constant kan worden verondersteld. Voordat de emissiegetallen kunnen worden berekend, moet dus eerst de ligging van de emissietrajecten worden bepaald of anders geformuleerd: de plaatsen op de spoorweg waar de overgangen tussen de emissietrajecten liggen.

In principe liggen deze overgangen op plaatsen waar één of meer van de invoergegevens van de emissieberekening op een voor het eindresultaat relevante wijze veranderen.

Op plaatsen waar een gebied met spoorstaafonderbrekingen start of eindigt zoals bij voegenspoorstaven, wissels en kruisingen kan, in geval van korte opeenvolging van emissietrajectovergangen, de afstand van 30 meter zoveel kleiner genomen worden als nodig. Voor berekeningen volgens de Standaardrekenmethode 1 worden de emissiegetallen bepaald over een lengte van vier maal de loodrechte afstand tussen het waarneempunt en de spoorweg; deze lengte is symmetrisch ten opzichte van de loodlijn van het waarneempunt op de spoorweg. Op deze wijze is voor het gehele spoorweggedeelte dat gelegen is binnen het aandachtsgebied dat voor deze rekenmethode is gedefinieerd, de emissie bekend.

Wordt de berekening uitgevoerd met behulp van de Standaardrekenmethode 2, dan is bepaling van emissiegetallen nodig over een twee maal zo grote lengte als boven omschreven.

Het emissiegetal per octaafband wordt berekend voor meerdere bronhoogten.

Vooral voor het berekenen van afscherming is deze verfijning noodzakelijk. Wanneer spoorvoertuigen die uitgerust zijn met zogenoemde blokremmen hun remming uitvoeren verschuift de bron van de geluidemissie duidelijk naar boven. Niet alle categorieën spoorvoertuigen hebben – dominante – emissies op alle bronhoogten. Met name de hogesnelheidstreinen hebben belangrijke hooggelegen bronnen. Bij spoorvoertuigen die zijn ontworpen voor een lagere maximumsnelheid kan de bijdrage van hoger gesitueerde bronnen veelal op 0 worden gesteld.

De verschillende baancorrectiefactoren zijn afhankelijk van het materieeltype. De onderscheiden factoren dekken vrijwel alle baantypen die in de praktijk worden aangetroffen. Een uitzondering vormen onder andere nog de stalen viaducten.

Het emissiegetal ter plaatse van stalen bruggen en andere niet in dit voorschrift genoemde kunstwerken en baanconstructies kan door middel van meting worden bepaald. Hierbij wordt de meetmethode volgens hoofdstuk 6 als uitgangspunt gebruikt.

De tabellen met correcties voor bovenbouwconstructies bevatten niet de correcties voor de situatie van een baan met raildempers op houten dwarsliggers. Voor deze situatie kan gerekend worden met de situatie van een baan met betonnen dwarsliggers (b=1 of bb=1).

De emissiegetallen voor dieselmaterieel en sommige elektrische locs bevatten niet het aandeel van de geluidsproductie bij acceleratie en stationair draaien. Omdat dit uitlaatgeluid en ventilatorgeluid hoog wordt geëmitteerd, dient te worden bedacht dat het aanbrengen van schermen op plaatsen waar geregeld materieel accelereert of stationair draait nauwelijks zin heeft als met dit uitlaatgeluid geen rekening worden gehouden. De huidige rekenmethode voorziet niet in het vaststellen van de geluidsbelasting in deze gevallen. Een methode zoals beschreven in de ‘Handleiding Meten en Rekenen Industrielawaai’ zal dan meer voor de hand liggen.

De emissieformules zijn geldig vanaf 40 km/h. Voor situaties waarbij de werkelijke snelheid lager is dan 40 km/h kan gerekend worden met de emissie horend bij 40 km/h, wat over het algemeen een lichte overschatting van de werkelijke emissie zal geven.

8.4.1. Effect van spoorstaafruwheidsbeheersing

[Regeling vervallen per 01-01-2024]

Formule 3.3c kan worden gebruikt in situaties waarin structureel sprake is van een fors hogere spoorstaafruwheid dan het landelijk gemiddelde dat de basis is voor dit rekenvoorschrift. Deze formule is echter met name bedoeld om de mogelijkheid te bieden de geluidreducerende effecten van het onderhouden van het spoor in een toestand met extra lage spoorstaafruwheid in de berekening te verwerken. Deze bronmaatregel bestaat uit het eenmalig aanbrengen van de extra lage spoorstaafruwheid en het vervolgens onderhouden van dit lage ruwheidsniveau. Door inzet van speciale slijptreinen en slijptechnieken is dit mogelijk en men spreekt ook wel van ‘akoestisch slijpen’. Essentieel is dat de spoorwegbeheerder dit speciale onderhoud naar behoren vorm geeft. Belangrijk onderdeel daarbij is een jaarlijkse controle van het ruwheidniveau van de sporen. Deze monitoring kan de spoorwegbeheerder vorm geven door handmetingen te laten uitvoeren, maar ook meetsystemen vanaf spoorvoertuigen zijn hiervoor wellicht geschikt.

8.4.2. Toeslag voor kunstwerken

[Regeling vervallen per 01-01-2024]

Het is mogelijk het rolgeluid afkomstig van het spoor op een kunstwerk te bepalen op dezelfde wijze als omschreven in TR procedure C. Er wordt een spoorwegoverdracht bepaald die de geluidskarakteristiek van het kunstwerk bevat. Dit kan de toeslagwaardes uit de tabellen in de hoofdstukken 2 en 3 vervangen.

8.5. Standaardrekenmethode 1 (als bedoeld in hoofdstuk 4)

[Regeling vervallen per 01-01-2024]

Geometrische definiëring van de situatie

Aan de Standaardrekenmethode 1 ligt ten grondslag dat de spoorweg over een bepaalde afstand bij benadering recht moet zijn. De toetsing ten aanzien van het recht zijn van de spoorweg is gedemonstreerd in figuur 4.1. De modellering van de situatie houdt in dat de rekenmethode niet toepasbaar is in de gevallen waarin de as van de werkelijke spoorweg een der gearceerde gebieden van figuur 4.1 doorsnijdt. In zulke gevallen kan het rekenschema wel vaak als indicatieve methode worden gebruikt. Voor de beoordeling van bepaalde eigenschappen wordt in het model alleen het (belangrijkste) spoorweggedeelte tussen de begrenzingslijnen beschouwd. De gehele spoorweg wordt echter in rekening gebracht.

Geluidafschermende objecten

De Standaardrekenmethode 1 is gebaseerd op grotendeels vrij zicht vanuit de waarnemer (het punt waarin het LAeq wordt bepaald) op de spoorweg. Er wordt daarbij vanuit gegaan dat de som van alle hoeken waarover obstakels het zicht van de waarnemer op het spoorwegverkeer belemmeren niet groter is dan 30°. Een en ander is geïllustreerd in figuur 4.1. Het bovenstaande geeft tevens het toepassingsbereik van de rekenmethode aan met betrekking tot obstakels tussen spoorweg en waarnemer. Voorbeelden van geluidsafschermende objecten zijn: gebouwen, schermen, wallen en het oplopend talud langs verdiept gelegen spoorbanen. Voor spoorbanen in ophoging geldt ook het grondlichaam als afscherming voor het geluid in neerwaartse richting. De Standaardrekenmethode 1 is derhalve niet geldig voor waarneempunten gelegen lager dan de bovenkant van de spoorstaven. Voor lage waarneempunten kan met de methode een (overschatte) indicatie van het werkelijke LAeq worden verkregen.

Bijlage 250526.png
Figuur 8.1 Horizontale projectie van het aandachtsgebied ter illustratie van het toepassingscriterium voor de afscherming

Emissievariatie

De Standaardrekenmethode 1 gaat ervan uit dat de spoorweg tussen de begrenzingslijnen geen al te grote variaties vertoont ten aanzien van de emissie.

Afstandscriterium

Het criterium dat de afstand tussen waarneempunt en as van het spoor ten minste anderhalf maal de afstand tussen de buitenste spoorstaven moet bedragen, is gesteld omdat in dat geval de uit meer dan één spoor bestaande spoorwegen kunnen worden gemodelleerd als één rijlijn gelegen ter plaatse van de as van het spoor. Als niet aan het criterium kan worden voldaan wordt de berekening uitgevoerd per spoor (of combinatie van sporen die wel aan het criterium voldoen), waarna de afzonderlijke uitkomsten energetisch worden gesommeerd.

Reflectieterm

De reflectieterm Creflectie brengt de geluidsniveauverhoging in rekening als gevolg van reflecties van het geluid tegen akoestisch harde oppervlakken langs en aan de overzijde van de spoorweg. Akoestisch harde oppervlakken zijn bijvoorbeeld gevels, muren en niet geluidsabsorberende schermen. Creflectie wordt bepaald door de parameters dr dw en fobp die in figuur 8.2 met een voorbeeld worden toegelicht. In dit voorbeeld is de objectfractie fobj gelijk aan 0,8. waaruit voor de reflectieterm de waarde van 0,8 dB volgt.

Voor reflecterende vlakken die niet geheel evenwijdig aan de spoorweg staan (afwijkingen > 20°) kan de rekenmethode ook worden toegepast. Creflectie wordt dan enigszins overschat.

Bijlage 250527.png
Figuur 8.2 Voorbeeld van de vaststelling van de parameters bij de berekening van de reflectieterm Creflectie. Uit de horizontale projectie blijkt dat dr‹4dw zodat de reflectieterm bij het Laeq in rekening moet worden gebracht.

Afstandsterm

Naarmate de afstand tot de geluidsbron groter is wordt de door de bron in een bepaalde richting uitgestraalde geluidsenergie over een groter oppervlakte verdeeld en het geluidsniveau dus lager. De afstandsfactor Dafstand brengt dit effect in rekening voor een lijnbron.

Verzwakkingsterm ten gevolge van de luchtabsorptie

De formule waarmee de luchtdemping wordt berekend, is geldig voor afstanden tot circa 1000 meter tot de as van de spoorweg.

Verzwakkingsterm ten gevolge van het bodemeffect

Voor de bepaling van B is het van belang erop te wijzen dat slechts niet verharde grond (grasland, landbouwgrond, bosgrond, enz.), in tegenstelling tot wateroppervlakten, asfalt, beton, klinkers, trottoirtegels, enz.) al of niet begroeid bijdraagt aan de bodemverzwakking. In bepaalde configuraties is het mogelijk dat de bodemverzwakking Dbodem negatief wordt.

8.6. Standaardrekenmethode 2 (als bedoeld in hoofdstuk 5)

[Regeling vervallen per 01-01-2024]

Algemeen

Het toepassingsgebied van de Standaardrekenmethode 2 is ruimer dan dat van de Standaardrekenmethode 1 en de meetmethoden, gegeven in hoofdstuk 6. Deze methode dient dan ook te worden toegepast in de gevallen waarin de andere methoden onvoldoende leiden tot een voor de betreffende situatie representatief equivalent geluidsniveau. Omdat het onmogelijk is om in dit besluit een methode te geven die in alle gevallen toepasbaar is, wordt per onderdeel van de rekenmethode aangegeven onder welke omstandigheden nader onderzoek op dat onderdeel noodzakelijk is. Uitvoerenden van nader onderzoek worden geacht een grote mate van deskundigheid te bezitten, terwijl aan de rapportage hoge eisen worden gesteld, zie bijlage I bij het Reken- en meet voorschrift geluid 2012.

Het overdrachtsmodel dat in de Standaardrekenmethode 2 wordt gehanteerd, met name het gedeelte betreffende de bodemdemping en de schermwerking, is gebaseerd op het gekromde stralenmodel bij meewindcondities. Bij de berekening van de schermwerking, volgens de theorie van Maekawa, wordt de kromming van de geluidsstralen verdisconteerd door de werkelijke schermhoogte met een ineffectief deel te verminderen. De bij dit overdrachtsmodel veronderstelde meewindcondities zijn echter niet representatief als meteorologisch gemiddelde. Door een meteocorrectieterm op te nemen in het model wordt een 'meteogemiddeld' equivalent geluidsniveau LAeq verkregen.

De emissiegetallen per emissietraject, gespecificeerd per octaafband, worden als bekend verondersteld. De geometrische invoergegevens zullen veelal afkomstig zijn van goed gedetailleerd kaartmateriaal (horizontale projectie en verticale doorsneden van de relevante objecten). Terwille van de automatische verwerking zullen deze gegevens alleen geschematiseerd in de berekening worden ingevoerd (gekromde lijnen worden benaderd door rechte lijnstukken, de hoogte van glooiend maaiveld wordt met een gemiddelde waarde aangegeven, akoestisch niet relevante details worden weggelaten, enzovoort). Dit maakt de invoer van gegevens een bezigheid die een zeker akoestisch inzicht vereist. Met name in complexe akoestische situaties dient bij de rapportage zowel het oorspronkelijk kaartmateriaal als de geschematiseerd ingevoerde geometrie toegevoegd te worden.

Begripsbepalingen

Bij de berekening van de overdracht (bodemeffect, schermwerking en meteocorrectie) wordt uitgegaan van puntbronnen. Per sector wordt daartoe de bron, die strikt genomen een stukje lijnbron (het rijlijnsegment) is, gelokaliseerd gedacht in één punt, hier het bronpunt genoemd.

Bijlage 250528.png
Figuur 8.3 Illustratie bij het begrip rijlijnsegment.

De Hoofdformule

De gegeven formules 5.1a en 5.1b zijn afgeleid uit de definitie van het equivalente geluidsniveau LAeq, die luidt:

Bijlage 250529.png

waarin t1 en t2 respectievelijk de begin en de eindtijd zijn van een gespecificeerd tijdsinterval in seconden, pA(t) de momentane A-gewogen geluiddruk (in Pa) en po de referentiegeluiddruk van 20 μPa is.

De constante van –58,6 hierin is het gevolg van het feit dat:

  • de emissieterm LE het geluidvermogen per kilometer representeert i.p.v. per meter;

  • de openingshoek in de geometrische uitbreidingsterm (Φ) in graden is i.p.v. in radialen;

  • de constante 1/4 π ontbreekt in de geometrische uitbreidingsterm.

Dit leidt tot een term +10 lg (1/1000).( π/180).(1/4 π) = –58,6 dB.

In de Wet geluidhinder zijn drie intervallen gespecificeerd, te weten de dagperiode lopende van 07.00-19.00 uur, de avondperiode lopende van 19.00–23.00 uur en de nachtperiode lopend van 23.00–07.00 uur. Alle termen in het rechterlid van formule 1b zijn voorzien van één of meer van de indices i, j, of n, omdat de berekening hier slechts betrekking heeft op één octaafband, één sector en één bronpunt, is omwille van de duidelijkheid afgezien van de vermelding van de indices.

De sommatie over de index n (van 1 t/m N) beschrijft de (energetische) superpositie van de afzonderlijke bijdragen van de rijlijnen. De sommaties over de indices i (van 1 t/m 8) en j (van 1 t/m J) zijn de numerieke integraties over de frequentie (octaafbanden) en de totale openingshoek van het waarneempunt (sectoren). In de meeste gevallen is het voldoende om alle sectoren een openingshoek van 5° toe te kennen. Sectoren met een openingshoek kleiner dan 5° kunnen nodig zijn omdat bij discontinuïteit in de geometrie (hoeken van gebouwen, uiteinden van schermen en dergelijke) en in de verkeersgegevens (bij verandering van het emissiegetal) sector-grensvlakken gelegd moeten worden. De totale openingshoek van het waarneempunt kan twee waarden hebben, te weten:

  • a. 180 graden indien het LAeq dient ten behoeve van de vaststelling van de geluidsbelasting van een gevel, of

  • b. 360 graden indien het LAeq dient ten behoeve van de vaststelling van de geluidsbelasting op een geluidsgevoelig terrein.

Reflecties

In figuur 8.4 is ter toelichting een voorbeeld opgenomen van de wijze waarop de constructie van een sector voor de berekening van de invloed van reflecties verloopt. Het gedeelte van de ongereflecteerde sector rechts van het reflecterend oppervlak wordt vervangen door het spiegelbeeld ervan ten opzichte van het reflecterend oppervlak. Het gespiegelde sectordeel hoort schijnbaar bij het waarneempunt W' dat het spiegelbeeld is van het werkelijke waarneempunt W.

Bijlage 250530.png

Figuur 8.4 De constructie van een sector na reflectie.

In figuur 8.5 is een voorbeeld gegeven van een sector die ten gevolge van een reflectie voor de tweede maal een spoorweg snijdt. De bijdrage van de getekende sector aan het equivalente geluidsniveau LAeq moet hier worden berekend uit de superpositie van de bijdragen van de bronpunten 3 en 4 (direct) en de bronpunten 1 en 2 (via reflectie). Bij reflecterende oppervlakken die een hoek van 5° of meer met de verticaal maken, staat niet à priori vast of het gereflecteerde geluid het waarneempunt bereikt. Een nader onderzoek is in dit geval vereist om aan te tonen in welke mate geluidsreflecties het LAeq van de betreffende sector beïnvloeden. De bijdrage van reflecterende oppervlakken die met de verticaal een grotere hoek maken dan 30° en het geluid opwaarts weerkaatsen (schuine daken en dergelijke) kunnen worden verwaarloosd, zodat nader onderzoek in dat geval overbodig is. Bij oneffenheden van het reflecterend oppervlak moet bij gevels gedacht worden aan balkons, galerijen, trappenhuizen en dergelijke. Als het bron of waarneempunt zicht op korte afstand hiervan bevinden kan het verstrooiend effect van de oneffenheden leiden tot geluidsniveaus die niet overeenkomen met de uitkomsten van deze rekenmethode. Een nader onderzoek, bijvoorbeeld praktijk- of schaalmodelmetingen, kan hierin uitkomst brengen. Als het waarneempunt zich op de gevel bevindt (dit is het geval wanneer de geluidsbelasting van de gevel moet worden vastgesteld), is bovenstaande uiteraard niet van toepassing op het waarneempunt.

Bijlage 250531.png
Figuur 8.5 Voorbeeld van een sector die door een reflectie tweemaal een spoorweg snijdt.

In feite wordt het oppervlak van een object per sector benaderd door een plat vlak. Als deze benadering géén goede beschrijving van de werkelijke situatie is, kan in veel gevallen het verdelen van het oppervlak over meerdere sectoren met een kleinere openingshoek de oplossing zijn. Is dit niet het geval dan is nader onderzoek vereist, bijvoorbeeld in de vorm van praktijk- of schaalmodelmetingen.

De overdrachtsdemping LOD

Luchtdemping DL

De gegeven waarden van δlucht zijn afgeleid uit het tertsbandspectrum ISO-DIS 3891 bij 10° C en 80% relatieve vochtigheid. Met name bij de hoge frequentiebanden is enige compensatie geïntroduceerd voor het sterk dispersieve karakter van de absorptie.

Bodemdemping DB

De indeling in drie bodemgebieden is noodzakelijk omdat bij het aangenomen gekromde-stralen model bodemreflecties optreden in de nabijheid van de bron zowel als de waarnemer en, bij voldoende grote afstand tussen bron en waarnemer, tevens in het tussenliggende gebied. Elk van die gebieden kan een andere bodemgesteldheid hebben, zodat bij de berekening drie verschillende absorptiefracties benodigd zijn.

Onder akoestisch hard worden hier verstaan: klinkers, asfalt en andere wegverhardingen, wateroppervlakken en dergelijke. Niet akoestisch hard zijn: grasland, landbouwgrond met en zonder gewas, zandvlakten, grond onder vegetatie enz.

De schermwerking Lsw

Aangezien dit onderdeel van het rekenmodel alleen geschikt is om de bijdrage van het geluid dat via diffractie over een object het waarneempunt bereikt te verrekenen, moet het aandeel van de geluidstransmissie door het object te verwaarlozen zijn.

Met andere woorden, de isolatie van het object moet belangrijk hoger zijn dan de berekende schermwerking om als afscherming in aanmerking te komen. Gebouwen, aarden wallen en dergelijke voldoen hier in het algemeen wel aan, ten aanzien van schermen, muren en soortgelijke objecten moet gelden dat de massa per eenheid van oppervlakte tenminste 10kg/m2 bedraagt en er zich geen grote kieren of opening en ('akoestische lekken') in bevinden. Aangetoond is dat een afwateringsspleet aan de onderzijde van een scherm van niet meer dan 10 cm hoogte en onder de bovenzijde van het spoor geen meetbare invloed heeft op de werking van het scherm.

De schermwerking in dit voorschrift is gebaseerd op een aantal gevalideerde metingen en berekeningen, die echter niet voor alle denkbare situaties representatief zijn. In de meeste gevallen zijn de benaderingen uit dit voorschrift conservatief en wordt de schermwerking onderschat. De toepassing van een lager geluidsscherm is dan wellicht mogelijk als dit door nader onderzoek kan worden onderbouwd. Dit nader onderzoek kan ook bestaan uit een inventarisatie van in het verleden reeds uitgevoerde onderzoeken, bijvoorbeeld schaalmodel onderzoek, aan soortgelijke schermen in vergelijkbare omstandigheden.

In elk geval dient nader onderzoek plaats te vinden bij toepassing van een reflecterend geluidsscherm, waarbij wordt afgeweken van formule 5.2. De benadering van de werkelijke schermhoogte door een effectieve schermhoogte volgens formule 5.2 is een conservatieve benadering; onderzoek van een aantal situaties heeft dit aangetoond.

De spoorspecifieke absorptie

Het in paragraaf 5.7 opgenomen spoorverkeersspectrum ter bepaling van de spoorspecifieke absorptie is gebaseerd op de aanwezigheid van ten minste 50% goederenverkeer (meer laag frequent geluid). Voor situaties met minder goederenverkeer is de feitelijke spoorstaafspecifieke absorptie meestal groter en zal het resultaat wat verkregen wordt door gebruik te maken van het opgegeven spectrum aan de veilige kant zitten.

De spoorspecifieke geluidisolatie

De geluidisolatie van zwaardere bouwmaterialen zoals beton en steen alsmede van aarden wallen, is over het algemeen voldoende om te voorkomen dat geluid door het scherm heen een bijdrage levert bij de waarnemer; het meeste geluid gaat immers via buiging over de schermrand heen. Bij toepassing van lichtere bouwmaterialen (bijvoorbeeld bij deuren of bij dilatatievoegen) en hoge schermen (3 tot 4 meter schermhoogte) en bij waarneempunten zeer dicht achter het scherm (tot 10 meter) is voorzichtigheid geboden.

Het octaafbandspectrum van het equivalente geluidsniveau

Voor een nauwkeurige bepaling van het equivalente geluidsniveau binnen woningen is het gewenst dat met beschikt over het octaafbandspectrum van het voor de gevel heersende geluidsveld. Op de beschreven wijze verkrijgt men een achttal waarden voor de equivalente geluidsniveaus in de onderscheiden octaafbanden. De A-weging is hierin reeds verdisconteerd. Het verdient in alle gevallen aanbeveling om naast het equivalente geluidsniveau in dB ook het octaafbandspectrum te vermelden bij de rapportage.

8.7. Meetmethode (als bedoeld in hoofdstuk 6)

[Regeling vervallen per 01-01-2024]

Bepaling overdrachtsverzwakking

De in hoofdstuk 6 beschreven meetmethoden dienen voor het bepalen van de overdrachtsverzwakking en voor het bepalen van de brugtoeslag.

De methoden hebben een hybride karakter, dat wil zeggen dat de bepaling van het equivalente geluidsniveau plaatsvindt door een combinatie van een meting en een berekening. De berekening wordt uitgevoerd voor een punt dat zodanig wordt gekozen dat de Standaardrekenmethode 1 (SRM 1) kan worden gebruikt. Het meetgedeelte van de methode bestaat uit een bepaling van het verschil in de geluidsoverdracht tussen het referentiepunt en het werkelijke meetpunt. Dit laatste gebeurt door over een aantal treinpassages het gemiddelde verschil in het sound exposure level LAE te meten. Het equivalente geluidsniveau ter plaatse van het meetpunt volgt dan uit formule 6.1; het is gelijk aan het LAeq op het referentiepunt LAeq,ref verminderd met het gemeten overdrachtsverschil ∆LAE.

Het voordeel van deze methode is dat tijdens de meting geen tellingen van het aantal passerende spoorvoertuigen hoeft plaats te vinden, noch dat snelheidsmetingen behoeven te worden uitgevoerd. De methode is ook onafhankelijk van variaties in de bovenbouwconstructie; het is zelfs mogelijk het LAeq te bepalen langs baangedeelten waarvan de bovenbouw onbekend is. De gegevens voor het aandachtsgebied van het referentiepunt moeten natuurlijk wel bekend zijn.

In principe is er geen beperking aan de langs de spoorweg gemeten afstand tussen de beide meetpunten (de afstand Mref – M' in de tekening). Als er echter tijdens de gemeten passages verandering in het rijgedrag langs dit traject optreden (snelheidsverloop, remmen) dan dient deze verandering min of meer overeen te komen met het normale rijgedrag ter plaatse.

Methode kunstwerktoeslag

Toepassing van de methode voor meting en modellering van bruggen

De methode kan gebruikt worden voor stalen bruggen met eventuele geluidschermen of geluidafschermende delen, onder de aanname dat het geluidscherm alleen effect heeft op het rolgeluid (de dipoolbronnen). Ook kan de methode gebruikt worden om het effect van de plaatsing van een geluidscherm te bepalen. Wel is voorzichtigheid geboden bij toepassing van hoge schermen (hoger dan 4 meter), doordat andere effecten een rol kunnen gaan spelen, zoals geluidafstraling door het scherm zelf.

Bij betonnen kunstwerken is de emissie ten gevolge van rolgeluid én bruggeluid verwerkt in de betreffende bovenbouwcorrectie. Deze werkwijze mag worden toegepast in situaties met geluidschermen of afschermende delen met een hoogte tot 2 meter boven de bovenkant van de spoorstaven. Bij toepassing van schermen hoger dan 2 meter op een betonnen kunstwerk is de methode voor meting en modellering van bruggen bruikbaar, waarbij een vlak brugbijdragefilter van 0 dB3 voor alle octaafbanden dient te worden gehanteerd. Bij twijfel of een kunstwerk moet worden aangemerkt als een betonnen of als een stalen kunstwerk is de constructie van het brugdek (de brugonderdelen direct onder de spoorstaafbevestiging dan wel de ballast) maatgevend. Voor bruggen korter dan 10 meter behoeft de methode niet te worden toegepast omdat deze niet als een apart deeltraject in rekening worden gebracht.

Voor situaties waarbij nader onderzoek is vereist omdat het brugaandeelfilter niet toepasbaar is (zie bovenstaande opmerkingen) is het mogelijk om met een methode voor het bepalen van het rolgeluid (zoals opgenomen in TR paragraaf 2.4 en 2.4.6.) het brug- en rolgeluidaandeel te meten.

Aangegeven is dat bij meersporige bruggen kan worden volstaan met meting van de toeslag van één spoor, mits het gelijkwaardige sporen zijn. Dit is ook van toepassing voor de zogenaamde ‘aanbruggen’, situaties waarbij de brug in de lengterichting uit meerdere delen bestaat. Ook dan kan onder de voorwaarde dat het gelijkwaardige brugdelen zijn, volstaan worden met meting van één deel.

Correctie voor afwijkende spoorstaafruwheid

Wat betreft spoorstaafruwheid moet voorkomen worden dat een niet-representatieve situatie beoordeeld wordt. De emissiegetallen van een doorgaand spoor (tabel 3.1) zijn gebaseerd op de referentieruwheid die is afgeleid uit de gemiddelde spoorstaafruwheid in Nederland. Dit is consistent met het onderhoudsregime van het spoor: zeer ruwe spoorstaven wordt op een gegeven moment geslepen en dan is het weer een tijdje glad. Er is echter niets bekend over de gemiddelde spoorstaafruwheid op stalen bruggen en de aanname dat de actuele spoorstaafruwheid representatief is voor de brug is plausibel. Bij het bepalen van de brugtoeslag wordt wel een ruwheidscorrectie toegepast voor de meetdoorsnede op de aardebaan, maar niet voor de brug. De brugtoeslag is dan dus deels het gevolg van de brugconstructie en deels van de hoge spoorstaafruwheid. Deze keuze heeft twee consequenties:

  • 1. De berekende geluidniveaus in de omgeving van de brug zo goed mogelijk overeenkomen met de werkelijk waar te nemen niveaus;

  • 2. Het slijpen van de spoorstaven op de brug als geluidreducerende maatregel meegenomen worden; in dit geval dient ook bij de meetdoorsnede op de brug de spoorstaafruwheid bepaald te worden volgens NEN-EN-ISO 3095:2005.

Methode voor bijzondere situaties

In bijzondere situaties (zoals wachtsporen of complexe stationssituaties) of voor het rechtstreeks bepalen van een equivalente geluidsbelasting zijn de hier beschreven methoden niet geheel toereikend. In het eerste geval kan de methode volgens de Handleiding Meten en Rekenen Industrielawaai uitkomst bieden. In het tweede geval zal door een akoestisch deskundige een meetplan opgesteld moeten worden, opdat een voldoende representatief resultaat kan worden bereikt.

Apparatuur

Het genoemde instrumentarium is een ‘minimumpakket’. In de praktijk zal blijken dat afhankelijk van de aard en de frequentie van de metingen meer apparatuur is benodigd om de uitvoering van de metingen te vergemakkelijken. In de meetpraktijk wordt al vaak gebruik gemaakt van de mogelijkheid het microfoonsignaal vast te leggen op magneetband en verwerking te laten plaatsvinden in het laboratorium. De gebruikte bandrecorder en het bandmateriaal moeten qua dynamisch bereik, frequentiekarakteristiek en vervormingseigenschappen zodanig zijn dat de instrumentatieketen met bandrecorder gelijkwaardig is aan een instrumentatieketen waarbij ter plaatse het microfoonsignaal wordt geanalyseerd. Naast een opname van de akoestische ijkbron, is een elektrische calibratie ter controle van de frequentiekarakteristiek van het bandmateriaal aan te raden. De resultaten hiervan dienen, indien beschikbaar, bij de rapportage te worden vermeld evenals het gebruikte type bandrecorder en bandmateriaal.

De meetplaats

Omdat op het meetpunt de geluidsbelasting worden berekend met de Standaardrekenmethode 1 spreekt het voor zich dat bij de keuze van dit punt de toepassingsvoorwaarden voor deze rekenmethode in acht moeten worden genomen. De voorkeursafstand van 25 meter hangt samen met het feit dat op die afstand de rekenmethode het meest nauwkeurig is en bovendien de minste problemen met stoorgeluid behoeven te worden verwacht.

Op de omschreven manier wordt het equivalente geluidsniveau bepaald op een punt in het gevelvlak veroorzaakt door het op het gevelvlak invallend geluidsveld.

Onder normale toestand wordt verstaan de toestand van de meetplaats zonder dat metingen worden verricht. De meetapparatuur moet dus zodanig worden opgesteld dat geen ongewenste reflecties worden veroorzaakt. Tot geparkeerde personenauto's wordt een minimale afstand van vijf meter aangehouden; voor vrachtwagens is dit tien meter. Als metingen voor een gevel worden uitgevoerd zijn de ramen in de nabijheid van de microfoon gesloten.

In de meeste gevallen kan met een statief worden gewerkt, waarmede aan de gestelde voorwaarden eenvoudig kan worden voldaan. Bij uitzondering kan worden gewerkt met een ‘hengel’ of een kabelbevestiging.

Voor condensatormicrofoons met een diameter van een halve inch of minder is deze eis minder kritisch, maar omwille van de eenduidigheid blijft ze ook hier gehandhaafd.

De meetprocedure

Vanwege het feit dat de geluidsoverdracht frequentieafhankelijk is, is ook de verdeling van het geëmitteerde geluidsvermogen over de verschillende octaafbanden van belang. Deze zogenaamde spectrale verdeling dient daarom tijdens de metingen ongeveer overeen te komen met de normaal ter plaatse voorkomende verdeling. De keuze van de materiaalsoorten waaraan de meting wordt verricht, is daarom min of meer representatief te zijn voor de normale (= jaargemiddelde) dienstregeling. Deze voorwaarde is echter niet zo kritisch; significante fouten kunnen bijvoorbeeld optreden als gemeten wordt aan een lichte materieelsoort (sprinters), terwijl het nachtelijk goederenvervoer maatgevend is.

De invloed van andere geluiden dan van het spoorverkeer op het betreffende spoorweggedeelte (de stoorgeluiden) veroorzaken dat een hoger geluidsniveau wordt gemeten dan het immissieniveau van het te meten spoorverkeer. Stoorgeluiden kunnen onder andere worden veroorzaakt door: industrieën, wegverkeer, windgeruis langs de microfoon, vogels, spelende kinderen etc. Als wordt gemeten in het vlak van een nog niet bestaande gevel is ook het geluid dat door het geplande gebouw zal worden afgeschermd stoorgeluid. Het onderkennen van stoorgeluiden en het schatten van de sterkte ervan in verhouding tot de sterkte van het te meten spoorwegverkeerslawaai zijn zaken die meestal op het gehoor moeten geschieden en dus een zekere ervaring van de meettechnicus zullen eisen.

Bij de rapportage van iedere meting dient een beschouwing te zijn over het waargenomen stoorgeluid tijdens de meting. Deze dient te bestaan uit een beschrijving van de stoorgeluidbronnen (aard en locatie) en een (vaak subjectieve) indicatie van de invloed ervan op het meetresultaat.

Op relatief grote afstanden van de spoorweg en met name in geval van afscherming wordt de invloed van windfluctuaties op het meetresultaat zo groot dat één meting een onvoldoende representatief beeld van de geluidssituatie geeft. Meerdere metingen zijn dan noodzakelijk. Indien mogelijk moeten de metingen onder andere weersomstandigheden (binnen het meteoraam) worden uitgevoerd. Als grote verschillen (groter dan 6 dB) optreden wordt aangeraden een extra meting bij lage windsnelheden uit te voeren.

8.7A. Meet- en rekenregel diffractor (als bedoeld in hoofdstuk 6A)

[Regeling vervallen per 01-01-2024]

Op basis van metingen en numerieke berekeningen (FEM-PE) is het effect van de diffractor op korte en lange afstand bepaald. Aan de hand van deze resultaten is een rekenregel opgesteld die geschikt is binnen het toepassingsgebied van de standaardrekenmethode.

Uit de FEM-PE sommen bleek een relatie te liggen tussen het extra effect van de diffractor en het Fresnelgetal (Nf). De relatie is onderzocht door verschillende typen diffractoren, die op verschillende frequenties waren afgesteld, te toetsen. Deze relatie bleek nauwelijks af te hangen van de octaafband, wel was er een verschil als er een versterking of een verzwakking optreedt vanwege de diffractor.

Bij het toepassen van een diffractoreffect op een scherm wordt geen profielcorrectieterm in rekening gebracht. Het toepassingsbereik van de methode bij een diffractor op scherm beperkt zich tot schermen waarvan de profielcorrectie CP gelijk is aan 0 in de situatie dat op dat object de diffractor zelf niet zou zijn toegepast.

De rekenregel voor de diffractor heeft alleen invloed op het gebied waar tevens sprake is van normale afscherming door de combinatie van diffractor en geluidscherm. Uit onderzoek blijkt dat het naar boven afbuigen van het geluid tot verwaarloosbaar kleine toenames van geluidniveaus leidt. Dit effect is dan ook niet meegenomen in rekenregel. Wel kan een diffractor voor sommige frequentiebanden tot een verminderde schermwerking leiden. Deze verminderde schermwerking is wel meegenomen in de rekenregel. Of er sprake is van dit effect blijkt uit de metingen van de producteigenschappen van de diffractor.

Het rekenvoorschrift stelt dat de omweg berekend moet worden ter hoogte van het diffractiepunt. Dit diffractiepunt kan beschouwd worden als dat punt in de constructie waar de omweg (de berekende fresnelgetal) het grootst is. De rekenregel is verder gevalideerd op horizontaal geplaatste diffractoren. Indien een diffractor op scherm onder een hoek geplaatst wordt is nader onderzoek naar het effect noodzakelijk.

Naast een rekenregel is tevens een meetmethode voor het bepalen van het diffractoreffect vastgelegd. Als basis voor deze meetmethode wordt NEN-EN 1793-4 gebruikt. Er is wel gebleken dat er ten opzichte van deze methode een kleine aanpassing noodzakelijk was. De norm gaat uit van een energetische middeling van het diffractoreffect van alle meetposities. Het blijkt dat de bovenste meetposities ertoe leiden dat er een relatief klein diffractor effect wordt gemeten waardoor de relatie met het Fresnelgetal niet goed te leggen is. Met een lineaire middeling over de meetpunten is er wel een goede relatie.

In de meetmethode wordt gebruik gemaakt van een standaard geluidspectrum. Dit spectrum wordt gebruikt voor de omrekeningen van het effect van 1/3 octaven naar 1/1 octaven. Het blijkt dat het gebruik van een spectrum tot betere resultaten leidt vergeleken met de situatie dat er een lineair spectrum wordt gehanteerd. Er is gekozen voor het gebruik van één standaard spectrum dat zowel in het rekenvoorschrift voor wegen als voor spoorwegen toegepast wordt om de producteigenschappen te bepalen. Er is gekozen voor het standaardspectrum wegverkeer. Het gebruik van twee verschillende spectra zal tot twee iets verschillende producteigenschappen leiden. Uit analyses blijkt dat het verschil tussen die twee verschillende producteigenschappen verwaarloosbaar klein is. Om die reden heeft het gebruik van één set getallen voor een bepaald type diffractor de voorkeur. Daarnaast wordt verwezen naar een meetnorm bedoeld voor wegverkeer. Er is tevens een meetnorm voor railverkeer, maar de beide meetmethodes zijn identiek. Om die reden wordt ook hier voor zowel weg als railverkeer verwezen naar één enkele norm.

8.8. Gebruik emissieregister (als bedoeld in hoofdstuk 7)

[Regeling vervallen per 01-01-2024]

De uitvoerder van het akoestisch onderzoek gaat in principe voor gegevens omtrent ligging en gebruik van de spoorweg uit van het emissieregister. Voor wat betreft de verkeersintensiteiten bevat het register de gegevens uit het peiljaar 1987. Ten einde een ‘wijziging van een spoorweg’ te kunnen toetsen aan het wettelijke intensiteitscriterium dat uitgaat van het gemiddelde over de laatste drie jaar dienen tevens de drie meest recente jaren in het register te worden opgenomen.

Van de akoestische onderzoeker wordt verwacht dat hij alle door hem verzamelde gegevens, ook die uit het emissieregister, kritisch beoordeelt op kwaliteit en betrouwbaarheid. Bij onduidelijkheden, twijfel over de juistheid van de gegevens of onvoldoende gegevens (bij bijvoorbeeld zeer complexe situaties) dient de akoestisch onderzoeker met de emissieregisterbeheerder in contact te treden. Hierbij wordt de doelmatigheid niet uit het oog verloren: het verzamelen en bijhouden van de gegevens kost een hoeveelheid inspanning, die exponentieel kan toenemen indien er te grote eisen aan worden gesteld.

Bijlage V. behorende bij hoofdstuk 5 van het Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024]

Het rekenen ten behoeve van geluidproductieplafonds

[Regeling vervallen per 01-01-2024]

1. Regels voor het berekenen van de geluidproductie op referentiepunten

[Regeling vervallen per 01-01-2024]

1.1. Beschrijving van de bron

[Regeling vervallen per 01-01-2024]

1.1.1. Bronregisterlijnen

[Regeling vervallen per 01-01-2024]

1.1.1.1. Voor wegen

[Regeling vervallen per 01-01-2024]

Voor rijkswegen wordt gebruik gemaakt van ten minste één bronregisterlijn per rijbaan. Indien wordt uitgegaan van één bronregisterlijn ligt deze in het midden van de rijbaan en bevat de horizontale positie en de hoogteligging. Indien uitgegaan wordt van meer bronregisterlijnen, liggen deze op een positie die representatief is voor de rijstroken waarop zij betrekking hebben. Bij verbindingen (o.a. klaverbladen), parallelrijbanen van autosnelwegen en op- en afritten ligt een extra bronregisterlijn op de rijbaan die fysiek gescheiden is van de hoofdrijbaan.

1.1.1.2. Voor spoorwegen

[Regeling vervallen per 01-01-2024]

Voor spoorwegen wordt gebruik gemaakt van één bronregisterlijn per spoor. Deze bronregisterlijn ligt in het midden van dat spoor en bevat de horizontale positie en hoogteligging.

1.1.2. Verkeersgegevens

[Regeling vervallen per 01-01-2024]

1.1.2.1. Algemeen

[Regeling vervallen per 01-01-2024]

De verkeersgegevens bestaan uit de verkeersintensiteit en de snelheid zoals deze zijn gedefinieerd in artikel 2.1 van bijlage III en artikel 1.1 van bijlage IV bij het Reken- en meetvoorschrift geluid 2012.

De verkeersgegevens worden gekoppeld aan de bronregisterlijnen.

Tijdelijke snelheidsverlagingen vanwege bijvoorbeeld werkzaamheden worden niet meegenomen in berekeningen van de geluidproductie.

1.1.3. Correcties op de geluidsemissie

[Regeling vervallen per 01-01-2024]

1.1.3.1. Voor wegen

[Regeling vervallen per 01-01-2024]

Correcties voor de emissieverhoging ten gevolge van een weghelling en ten gevolge van optrektoeslagen in de omgeving van kruispunten en snelheidsbeperkende obstakels worden niet toegepast.

1.1.3.2. Voor spoorwegen

[Regeling vervallen per 01-01-2024]

De brugemissietoeslag voor stalen kunstwerken is gebaseerd op een volgens bijlage IV bij deze regeling bepaalde waarde. Als een dergelijke waarde niet voorhanden is, wordt de brugemissietoeslag voor stalen kunstwerken bepaald door een berekening met behulp van het rekenmodel van paragraaf 6.2 van bijlage IV bij deze regeling, waarbij invoerwaarden worden gebruikt die zijn afgeleid van metingen van vergelijkbare stalen kunstwerken. In bijzondere gevallen kunnen voor de brugemissietoeslag de volgende standaardwaarden worden gebruikt voor de volgende typen bovenbouwconstructies:

  • a. directe bevestiging zonder ballastbed (voegloos): toeslag 10 dB;

  • b. directe bevestiging zonder ballastbed (voegenspoor): toeslag 12 dB;

  • c. houten dwarsligger zonder ballastbed: toeslag 10 dB;

  • d. ballastspoor met dwarsliggers (voegloos): toeslag 5 dB;

  • e. ingegoten spoorstaaf zonder ballastbed (voegloos): toeslag 8 dB;

  • f. ingegoten spoorstaaf (stille brugontwerp): toeslag gelijk aan voegloos ballast-spoor met houten dwarsliggers.

Deze toeslagen gelden voor alle spoorvoertuigcategorieën en voor elke oktaafband.

Voor een betonnen brug kan de volgende modellering gebruikt:

  • 1. Betonnen kunstwerken korter dan 50 meter worden als plaatbrug gemodelleerd, waarbij wordt uitgegaan van de werkelijke bovenbouw. Een opstaande rand wordt niet gemodelleerd.

  • 2. Bij betonnen kunstwerken die langer zijn dan 50 meter wordt de constructie en bovenbouwcorrectie gebruikt die hoort bij het type kunstwerk. Een opstaande rand wordt gemodelleerd als (een enkel stomp) scherm op 2,5 meter ten opzichte van het buitenste spoor op het kunstwerk.

  • 3. In afwijking van bijlage IV van deze regeling, paragraaf 5.3.9, worden schermen die hoger zijn dan 2 meter gemodelleerd met de werkelijke hoogte zonder dat nader akoestisch onderzoek vereist is.

1.2. Beschrijving van de overdracht

[Regeling vervallen per 01-01-2024]

1.2.1. Sectorhoek

[Regeling vervallen per 01-01-2024]

Voor de indeling van de sectoren wordt uitgegaan van een vaste openingshoek van 2°.

1.2.2. Reflecties

[Regeling vervallen per 01-01-2024]

Bij de berekeningen wordt uitgegaan van maximaal 1 reflectie per overdrachtspad.

1.2.3. Afscherming

[Regeling vervallen per 01-01-2024]

1.2.3.1. Voor wegen

[Regeling vervallen per 01-01-2024]

Geluidschermen en geluidwallen worden bij wegen als volgt gemodelleerd:

  • a. Bij schermen die aan de zijde van de weg akoestisch hard (reflecterend) zijn en waarvan het reflecterende oppervlak loodrecht, of onder een helling die kleiner is dan 5 graden, op het aardoppervlak staat, geldt voor alle octaafbanden δrefl = 1 dB.

  • b. Bij geluidwallen en bij schermen die aan de zijde van de weg akoestisch absorberend zijn of schermen die onder een helling van meer dan 5 graden op het aardoppervlak staan en waarvan uit nader onderzoek is gebleken dat deze als absorberend kunnen worden beschouwd, wordt geen reflectiebijdrage in rekening gebracht.

  • c. Voor schermen die opgebouwd zijn uit verschillende onderdelen, geldt per octaafband δrefl = –10 lg[0.8*(1 – Sf)], waarin Sf het deel van het oppervlak van het scherm is dat onder onderdeel b valt.

1.2.3.2. Voor spoorwegen

[Regeling vervallen per 01-01-2024]

Geluidschermen en geluidwallen worden bij spoorwegen met de werkelijke hoogte gemodelleerd en er wordt geen reflectiebijdrage in rekening gebracht.

Het afschermende effect van een overkapping met dichte zijwanden wordt gemodelleerd door het plaatsen van absorberende geluidschermen met een hoogte van 100 meter boven bovenkant spoor, op de locatie(s) van de zijwanden van de overkapping. Van een overkapping zonder dichte zijwanden wordt geen afschermende werking in rekening gebracht.

1.2.4. Bodemdemping

[Regeling vervallen per 01-01-2024]

1.2.4.1. Voor wegen

[Regeling vervallen per 01-01-2024]

Behoudens de verharding van de weg wordt, voor het bepalen van de bodemdemping van wegen, uitgegaan van een akoestisch zachte bodem. Ook (berm)sloten, pech- en vluchthavens, verzorgingsplaatsen met toe- en afritten en andere wegen, parkeerplaatsen en pleinen worden als akoestisch zacht bodemgebied beschouwd. De bodemdemping van de verharding van de weg wordt bepaald overeenkomstig de methode uit bijlage III bij deze regeling.

1.2.4.2. Voor spoorwegen

[Regeling vervallen per 01-01-2024]

Voor het bepalen van de bodemdemping van spoorwegen wordt uitgegaan van een akoestisch zachte bodem.

1.2.5. Bepaling gemiddelde maaiveldhoogte

[Regeling vervallen per 01-01-2024]

In afwijking van de methodiek uit de bijlagen III en IV bij deze regeling, waarbij de gemiddelde maaiveldhoogte in het brongebied en het ontvangergebied per sectorhoek wordt bepaald, mag ten behoeve van het berekenen van geluidproductieplafonds een meer generalistische methode worden gebruikt, waarin de variatie in de maaiveldhoogte wordt meegenomen.

1.2.6. Modellering talud

[Regeling vervallen per 01-01-2024]

Ten behoeve van het berekenen van geluidproductieplafonds mag een vereenvoudigde modellering van het talud toegepast worden.

1.2.7. Tunnels

[Regeling vervallen per 01-01-2024]

Bij ingangen en uitgangen van tunnels mag het afschermend effect van de tunnelwanden worden verwaarloosd.

1.2.8. Gekromde schermen en luifels

[Regeling vervallen per 01-01-2024]

Gekromde schermen of luifels langs wegen worden gemodelleerd door middel van een vervangend verticaal scherm, waarvan de top overeenkomt met de top van het gekromde scherm of het uiteinde van de luifel. Als dit punt, bezien vanuit de voet van de luifel, voorbij de rijlijn ligt, wordt de rijlijn plaatselijk verschoven. De nieuwe positie van de bron is dan halverwege de binnenste wegrand en het vervangende verticale scherm zoals in onderstaande figuren is weergegeven.

Bijlage 250532.png

2. Regels voor de eerste geluidproductieplafonds voor bestaande wegen en spoorwegen

[Regeling vervallen per 01-01-2024]

Voor de totstandkoming van de eerste geluidproductieplafonds voor bestaande wegen en spoorwegen staan bijzondere bepalingen in de Wet milieubeheer. Bij de berekening van de geluidproductie ten behoeve van de vaststelling van deze geluidproductieplafonds zijn, naast de regels uit hoofdstuk 1 van deze bijlage, ook de in dit hoofdstuk opgenomen nadere regels van toepassing.

2.1. Op basis van artikel 11.45, eerste lid, Wet milieubeheer

[Regeling vervallen per 01-01-2024]

2.1.1. Voor wegen

[Regeling vervallen per 01-01-2024]

Bij het berekenen van de geluidproductie voor de vaststelling van het geluidproductieplafond, bedoeld in artikel 11.45, eerste lid, van de Wet milieubeheer worden de volgende gegevens als brongegevens voor wegen gehanteerd:

  • 1. De verkeersgegevens op basis van het kalenderjaar 2008. Als de gegevens van dit jaar niet voorhanden zijn, worden gegevens gehanteerd op basis van het kalenderjaar dat er het dichtst bij ligt en waarvoor gegevens welvoorhanden zijn;

  • 2. Voor de ligging van de bronregisterlijnen, het type wegdek, afschermende objecten: de situatie op 31 december 2008 dan wel de situatie op basis van de meeste recente gegevens voor het moment van inwerkingtreding van hoofdstuk 11 van de Wet milieubeheer;

  • 3. Een plafondcorrectiewaarde van 1,5;

  • 4. Voor zover het betreft een weg die is aangewezen op grond van artikel 11.45, vierde lid, van de Wet milieubeheer, wordt in afwijking van onderdeel 2, uitgegaan van het type wegdek zoals aangegeven in artikel 38, vierde lid, van het Besluit geluid milieubeheer.

De basis voor bovenstaande gegevens zijn historische registraties van Rijkswaterstaat onder andere op basis van tellussen in de weg.

Tijdelijke situaties, bijvoorbeeld in verband met wegwerkzaamheden, worden niet in de gegevens verwerkt.

2.1.2. Voor spoorwegen

[Regeling vervallen per 01-01-2024]

Bij het berekenen van de geluidproductie voor de vaststelling van het geluidproductieplafond, bedoeld in artikel 11.45, eerste lid, van de Wet milieubeheer worden de volgende gegevens als brongegevens voor spoorwegen gehanteerd:

  • 1. De verkeersintensiteit op basis van het gemiddelde per spoorweggedeelte over de jaren 2006, 2007 en 2008. Als gegevens van één of meer van deze jaren niet beschikbaar zijn, wordt het gemiddelde bepaald over de overige jaren. Als gegevens voor alle drie de jaren niet beschikbaar zijn, worden gegevens gehanteerd op basis van het kalenderjaar dat er het dichtst bij 2008 ligt en waarvoor gegevens wel voorhanden zijn;

  • 2. Voor de ligging van de bronregisterlijnen, de bovenbouwconstructie, afschermende objecten en de ligging van stations: de situatie op 31 december 2008 dan wel de situatie op basis van de meeste recente gegevens voor het moment van inwerkingtreding van hoofdstuk 11 van de Wet milieubeheer waarbij raildempers die vooruitlopend op de uitvoering van afdeling 11.3.6 van de Wet milieubeheer zijn aangebracht, niet worden meegenomen;

  • 3. Een plafondcorrectiewaarde van 1,5 dB.

De basis voor bovenstaande gegevens zijn de gegevens zoals die zijn gepubliceerd in het emissieregister, waarbij fouten zoveel mogelijk zijn hersteld. Middeling van de verkeersintensiteiten geschiedt lineair per kilometerinterval, etmaalperiode, spoorvoertuigtype, snelheidsprofieltype, richting en eventueel spoor. Bij de berekening wordt rekening gehouden met ‘doorgaande’ en ‘stoppende’ treinen, gerelateerd aan de ‘invloedssfeer’ van een station. Deze 'invloedssfeer' van een station loopt tot halverwege de afstand naar het volgende station.

Tijdelijke situaties, bijvoorbeeld door spoorwegwerkzaamheden, worden niet in de gegevens verwerkt.

2.2. Op basis van artikel 11.45, tweede lid, Wet milieubeheer

[Regeling vervallen per 01-01-2024]

Bij het bepalen van de geluidproductieplafonds, bedoeld in artikel 11.45, tweede lid, van de Wet milieubeheer, wordt naast de uit het betrokken besluit afgeleide brongegevens, voor zover relevant, tevens uitgegaan van in aanvulling op het betrokken besluit getroffen of te treffen geluidreducerende maatregelen en betrekking hebbende overeenkomsten of toezeggingen. De brongegevens worden op deze wijze bepaald voor het weg- of spoorweggedeelte dat ten minste het tracé omvat waarop het besluit direct betrekking heeft. Als de fysieke grenzen van de geluidbeperkende maatregelen uit of in aanvulling op het besluit daarbuiten doorlopen, worden die ook buiten de grenzen van het besluit, opgenomen in de brongegevens behorende bij de geluidproductieplafonds. Dit is in onderstaande figuur weergegeven.

Bijlage 250533.png

Bij het ontbreken van gegevens voor de dag- en/of de avondperiode worden deze verkeersintensiteiten aangevuld, waarbij gebruik wordt gemaakt van de verhouding tussen de verkeersintensiteit in de dag-, avond- en nachtperiode zoals die in 2008 was.

2.3. Op basis van artikel 11.45, derde lid, Wet milieubeheer

[Regeling vervallen per 01-01-2024]

De brongegevens voor een geluidproductieplafond dat is vastgesteld op grond van artikel 11.45, derde lid, van de Wet milieubeheer zijn gelijk aan de brongegevens die voor spoorwegen worden gehanteerd voor bepaling van het geluidproductieplafond op grond van artikel 11.45, eerste lid, van de Wet milieubeheer.

3. Regels voor berekening geluidproductie voor het jaarlijks verslag

[Regeling vervallen per 01-01-2024]

Bij het opstellen van het verslag, bedoeld in artikel 11.22 van de Wet milieubeheer, wordt de geluidproductie voor het betreffende kalenderjaar en de vergelijking met het geldende geluidproductieplafond berekend op basis van:

  • a. de voor dat kalenderjaar representatief te achten verkeersgegevens;

  • b. de afschermende objecten die op de laatste dag van het kalenderjaar zijn opgenomen in het register voor zover deze daadwerkelijk aanwezig zijn;

  • c. de laatste dag van het betreffende kalenderjaar voor de overige gegevens.

4. Toelichting

[Regeling vervallen per 01-01-2024]

4.1. Bij hoofdstuk 1

[Regeling vervallen per 01-01-2024]

Algemeen

Uit hoofdstuk 11 van de Wet milieubeheer volgt dat geluidproductieplafonds de maximaal toegestane geluidproductie op referentiepunten bepalen. Bovendien volgt uit de Wet milieubeheer ook dat de geluidproductie de berekende geluidsbelasting op referentiepunten is. De referentiepunten liggen aan weerzijden van de weg of spoorweg en zijn opgenomen in het geluidregister. In bijlage 2 van de memorie van toelichting bij de wet van 24 november tot wijziging van de Wet milieubeheer in verband met de invoering van de geluidproductieplafonds en de overheveling van hoofdstuk IX van de Wet geluidhinder naar de Wet milieubeheer4 is beschreven hoe de referentiepunten zijn neergelegd.

De methode van het berekenen van de geluidproductie is grotendeels gelijk aan die voor het berekenen van geluidsbelastingen op woningen. Het uitgangspunt is dan ook de Standaardrekenmethode 2 van bijlage III (voor wegen) respectievelijk bijlage IV (voor spoorwegen) bij deze regeling. Maar er geldt een aantal aanvullende en afwijkende regels. Deze regels zijn in deze bijlage V bij deze regeling opgenomen. Deze regels hebben als doel een heldere scheiding in verantwoordelijkheden tussen beheerder en gemeente te bewerkstellingen en daarnaast het bereiken van meer eenduidigheid en het vergroten van de uitvoerbaarheid. Dat laatste is van belang omdat bijvoorbeeld voor het jaarlijkse verslag de omvang van het onderzoeksgebied zeer groot is. Dit behelst dan namelijk vrijwel het hele Nederlandse netwerk van rijkswegen of hoofdspoorwegen.

Het systeem met geluidproductieplafonds moet bijdragen aan een goede, heldere en logische scheiding tussen verantwoordelijkheden van de beheerder en die van gemeenten. In de memorie van toelichting bij Hoofdstuk 11 van de Wet milieubeheer is dit uitgebreid beschreven. Voor deze scheiding is het noodzakelijk om bij de berekening van de geluidproductie geen rekening te houden met allerlei specifieke kenmerken van de omgeving. Gebouwen, harde bodemgebieden en andere obstakels in de omgeving worden daarom genegeerd in de berekening. Dit is een wezenlijke afwijking van berekeningen van de geluidsbelasting op geluidsgevoelige objecten. Hierdoor is de geluidproductie onafhankelijk van wijzigingen in de omgeving. Dit is logisch omdat een weg- of spoorbeheerder geen invloed heeft op dergelijke wijzigingen. Zijn nalevingstaak inzake het geluidproductieplafond is gericht op wijzigingen van de bron. Dat zijn immers de zaken waar de beheerder wel over gaat.

Een gemeente is verantwoordelijk voor de wijzigingen in de omgeving van de bron. Zoals bijvoorbeeld de sloop van een pand dat geluidafscherming biedt aan de daar achter gelegen woningen. Of de aanleg van een groot hard bodemoppervlak (parkeerterrein) waardoor geluidniveaus toenemen. Een ander voorbeeld is de bouw van een hoog gebouw langs de bron waardoor door reflecties de geluidniveaus aan de overzijde toenemen. Al deze wijzigingen in de omgeving hebben geen invloed op de berekende geluidproductie. Aan de andere kant hebben wijzigingen in de verkeersomvang, de snelheid van het verkeer, en de geografische ligging van de bron wel direct invloed op de geluidproductie.

De aanvullende regels uit deze bijlage leiden er toe dat de geluidbelasting in een referentiepunt in werkelijkheid anders kan zijn dan de berekende geluidproductie. In open gebieden, zoals weiland, landbouwgebied of natuurgebied zal de afwijking klein zijn. Maar het is bijvoorbeeld ook mogelijk dat een referentiepunt zich binnen een gebouw bevindt of op een plek waar gebouwen op een andere wijze van grote invloed zijn op de geluidsbelasting. Dan zal de afwijking tussen de werkelijke geluidsbelasting en de berekende geluidproductie groot kunnen zijn. Deze afwijking heeft geen effect op de werking van het systeem met geluidproductieplafonds. Het gaat in dat systeem namelijk om verschillen in plaats van absolute waarden. Het effect van gebouwen wordt zowel bij de vaststelling van geluidproductieplafonds als bij de naleving ervan niet meegenomen. Daardoor werkt het systeem in alle situaties als begrenzing van groei de groei van geluidsbelastingen. De vereenvoudigingen bij berekeningen van de geluidproductie hebben voor omwonenden verder ook geen nadelige consequenties omdat ze niet van invloed zijn bij de berekening van geluidsbelastingen van geluidsgevoelige objecten. Voor dergelijke berekeningen gelden alle regels uit bijlage III en IV bij deze regeling. De maatregelen die uit zo’n onderzoek voortvloeien zullen vervolgens worden opgenomen in het geluidsregister om de nieuwe geluidsproductieplafonds vast te stellen volgens de vereenvoudigde systematiek.

Brongegevens

De geluidproductieplafonds zijn gebaseerd op bijbehorende brongegevens. De brongegevens worden aangewezen in de Regeling geluid milieubeheer. Het gaat om gegevens over de ligging, technische kenmerken en het gebruik van de bron, de afschermende objecten, de plafondcorrectiewaarde en het hoogteverloop tussen bron en referentiepunt. De brongegevens die behoren bij de geldende geluidproductieplafonds zijn opgenomen in het geluidregister. De brongegevens uit het geluidregister vormen samen met de ligging van de referentiepunten de belangrijkste gegevens die nodig zijn voor berekening van de maximaal toegestane geluidproductie op de referentiepunten.

Bronregisterlijnen

Een belangrijk onderdeel van de berekening vormen de bronregisterlijnen. Dit zijn de lijnen die de bron van het geluid in de berekeningen vormen. Deze lijnen krijgen bij berekening van de geluidproductie, op grond van artikel 5.2 van deze regeling, bij een weg de functie van rijlijn uit bijlage III en bij een spoor de functie van onderste bronlijn uit bijlage IV. Aan de bronregisterlijnen worden gegevens over het verkeer gekoppeld. Bij wegen wordt er per rijbaan over het algemeen slechts één bronregisterlijn gedefinieerd die in het midden van de verharding van de betreffende rijbaan ligt. Een rijksweg zal dus meestal twee bronregisterlijnen hebben: voor elke rijrichting één bronregisterlijn die ligt in het midden van de betreffende verharding. Bij fysiek gescheiden rijbanen voor dezelfde richting, zoals bijvoorbeeld bij de hoofd- en parallelbanen op de A12 bij Utrecht of de A2 bij den Bosch, bezit de weg dus vier bronregisterlijnen. Bij knooppunten zoals klaverbladen en bij op- en afritten liggen extra bronregisterlijnen voor de weggedeelten die fysiek gescheiden zijn van de hoofdrijbanen. In afwijking van bovenstaande kan er in bijzondere situaties gebruik gemaakt worden van meer dan één bronregisterlijn per rijbaan. Daarmee kan dan de situatie nauwkeuriger worden vastgelegd. Dit zal bij de het in werking treden van de nieuwe regels bijvoorbeeld het geval kunnen zijn bij geluidproductieplafonds die worden vastgesteld op basis artikel 11.45, tweede lid, van de Wet milieubeheer. Deze geluidproductieplafonds worden vastgesteld op basis van gegevens van recente (tracé- en wegaanpassings)besluiten. Op basis van deze besluiten is veelal een detaillering mogelijk naar meer dan één bronregisterlijn per rijbaan. Uiteraard kan ook bij procedures tot wijziging van geluidproductieplafonds aanleiding zijn om over de stappen van één bronregisterlijn per rijbaan naar meer bronregisterlijnen per rijbaan.

Bij een fysieke verbreding van de wegverharding verschuift de ligging van bestaande bronregisterlijnen. Als echter de bestaande verharding anders gebruikt gaat worden, wijzigt de positie van de bronregisterlijn niet. Een voorbeeld hiervan is bijvoorbeeld het gebruik van een bestaande vluchtstrook als spitsstrook. De beheerder kan in beide gevallen ook aanleiding zien om bronregisterlijnen toe te voegen om daarmee het register nader te detailleren.

Bij spoor is de situatie anders dan bij rijkswegen. Bij de rijksweg kan immers het verkeer op één rijbaan vrijwel overal van rijstrook wisselen. Bij spoor is het verkeer in principe gebonden aan het fysieke spoor waar het zich op bevindt. Daarom wordt bij spoorwegen voor ieder spoor een afzonderlijke bronregisterlijn gedefinieerd. Zeer weinig bereden sporen kunnen achterwege blijven. Bij complexe spoorbundels kunnen vereenvoudigingen worden toepast waarbij echter steeds wordt gezorgd dat al het relevante spoorverkeer wordt meegenomen in de berekeningen.

Verkeersgegevens

Bij vaststelling en wijzigingen van geluidproductieplafonds, bij fysieke wijzigingen aan de weg of spoorweg en voor het jaarlijkse verslag met betrekking tot naleving moet de geluidproductie in de referentiepunten worden bepaald. Daarbij worden meestal gedeeltelijk andere gegevens gehanteerd dan de brongegevens uit het geluidregister. Voor het jaarlijkse verslag zal bijvoorbeeld met actuele verkeergegevens worden gerekend.

Bij formele procedures tot wijziging of vaststelling bepaalt artikel 11.33, vijfde lid, van de Wet milieubeheerdat de beheerder de geluidproductie berekent. Dit is gedaan om nog meer eenduidigheid en uniformiteit in de gegevens te verkrijgen.

De gehanteerde verkeersgegevens zullen afkomstig zijn uit systemen van de beheerder. Daar waar deze systemen niet dekkend of onvoldoende gedetailleerd zijn, worden uit de wel beschikbare gegevens betrouwbare gegevens afgeleid of aanvullende gegevens toegevoegd. Het betreffen dan bijvoorbeeld gegevens voor op- en afritten alsmede verbindingen tussen hoofdroutes bij knooppunten.

Voor spoor kan worden gedacht aan de koppeling van verkeersgegevens aan de verschillende sporen van een (complexe) spoorbundel en bij spoorwegknooppunten. Ook het verwerken van de opening van nieuwe stations en de sluiting van oude, vergt aanpassing van verkeersgegevens volgens vuistregels. Daarnaast gaat het bijvoorbeeld ook om de vertaling van maximale snelheden naar snelheden die representatief zijn voor de situatie op een gemiddelde weekdag. Daarbij kan het nodig zijn om onderscheid te maken tussen de verschillende dagdelen en categorieën van motorvoertuigen en spoorvoertuigtypen. Met name bij een regime met dynamische maximale snelheden of situaties waarbij door de verkeersdrukte overdag de maximale snelheid niet realistisch is, kan het nodig zijn per etmaalperiode te differentiëren.

Reflecties

Voor de berekening van de geluidproductie in het referentiepunt is het rekenen met één reflectie voldoende. Dit sluit overigens aan bij standaardwerkwijze bij toepassing van bijlage III en IV bij deze regeling.

Modellering

Bij de modellering van de bron en de omgeving worden vereenvoudigingen doorgevoerd. Dit is gedaan om het systeem werkbaar te houden. Daarnaast is er rekening mee gehouden dat zoveel mogelijk gebruik kan worden gemaakt van reeds beschikbare digitale gegevens. Voorbeelden van vereenvoudigingen zijn:

  • het weglaten van ‘details’ bij de modellering van kunstwerken, overwegen, perrons, tunnelmonden, etc.;

  • het weglaten van (kleine) correcties op de emissie (bijv. van kruispunten);

  • het gebruiken van standaard brugemissietoeslagen;

  • vereenvoudiging van de modellering van het talud.

Bij de modellering van het talud mag de gemiddelde maaiveldhoogte in het brongebied en het ontvangergebied volgens een meer generalistische methode worden bepaald, waarbij deze waarden niet per sectorhoek worden berekend, maar aan de bronsegmenten en aan de ontvangers worden toegekend op basis van de hoogtevariatie in de omgeving.

Gekromde schermen en luifels

De bepaling van de schermwerking bij gekromde schermen (en luifels) kan (grotendeels) gedaan worden volgends de methoden zoals die in akoestische onderzoeken gebruikelijk zijn.

Afscherming

Geluidschermen kunnen bij wegen leiden tot verhoging van geluidniveaus aan de overzijde. Dit komt door reflecties van het geluid tegen het scherm. Sommige schermen zijn zo ontworpen dat de effecten van deze reflecties zo klein mogelijk zijn. Dit zijn zogenoemde absorberende schermen, of hellend geplaatste reflecterende schermen. Voor deze schermtypen wordt het effect van reflecties naar de overzijde bij het berekenen van de geluidproductie verwaarloosd. Dat is gedaan om te voorkomen dat schermen die de beheerder plaatst vanuit zijn saneringstaak, of een gemeente voor woningbouw, leiden tot overschrijdingen van geluidproductieplafonds aan de overzijde. Het systeem zou dan namelijk de uitvoering van maatregelen die een grote milieuwinst opleveren blokkeren. Op deze wijze wordt ook aangesloten bij de huidige praktijk bij de voorbereiding van geluidschermen voor sanering of nieuwbouw van woningen. Daarbij wordt het effect van reflecties naar de overzijde ook verwaarloosd. Met deze nieuwe regels geldt dit echter alleen voor schermen die zo zijn uitgevoerd dat het effect van dergelijke reflectie minimaal is. Daardoor staat er druk op de beheerder dit type schermen te realiseren zodat de gevolgen voor de overzijde ook zeer beperkt zullen zijn. Bij het bepalen van de geluidsbelasting van objecten, geldt deze vereenvoudiging niet. Dan worden voor alle schermen bij rijkswegen reflecties meegenomen. Bij een wijziging van een geluidproductieplafond is dus geborgd dat bij bescherming van geluidsgevoelige objecten, ook reflecties tegen absorberende schermen en hellend geplaatste schermen worden meegenomen.

Voor spoor hebben reflecties tegen schermen voor de overzijde vrijwel geen invloed. Dat komt doordat de trein als een soort barrière verhindert dat het tegen het scherm gereflecteerde geluid woningen aan de andere zijde bereikt. Daarom wordt bij spoor, conform bijlage IV, bij schermen geen rekening gehouden met reflecties naar de overzijde. Bij toepassing van bijlage IV wordt voor een reflecterend scherm echter wel rekening gehouden met een verminderde schermwerking door reflecties tussen het scherm en de trein. Deze detaillering wordt niet meegenomen in de berekening van de geluidproductie omdat de benodigde informatie van bestaande schermen hiervoor niet voorhanden is.

4.2. Bij hoofdstuk 2

[Regeling vervallen per 01-01-2024]

Voor de eerste vaststelling van geluidproductieplafonds voor bestaande wegen en spoorwegen gelden speciale regels. Deze zijn opgenomen in artikel 11.45 van de Wet milieubeheer en technisch uitgewerkt in hoofdstuk 2 van deze bijlage. Daarbij is aangegeven hoe het begrip ‘heersende geluidproductie’ wordt vertaald naar concrete technische gegevens voor berekening van een geluidproductie. Voor wegen is daarbij het jaar 2008 als basis gekozen. Voor spoor wordt voor de verkeersintensiteiten uitgegaan van een gemiddelde over 2006, 2007 en 2008. Dat is gedaan om het effect van fluctuaties te verkleinen. Bij spoor zijn deze fluctuaties vaak groot. De middeling is lineair, hetgeen overeenkomt met energetische middeling van de geluidemissie.

Naast de verkeersaantallen en snelheden zijn ook gegevens over wegverhardingen, de geografische ligging van de bron, stations, spoorconstructies en afschermende objecten nodig voor het vastleggen van de ‘heersende geluidproductie’. In verband met beschikbaarheid van betrouwbare gegevens is ook hier gekozen de situatie in 2008 als basis te nemen. Het betreft dan geen gemiddelde over het kalenderjaar, maar de situatie op 31 december 2008. Voor de afschermende objecten, de ligging van de bron, de wegverhardingen en raildempers zijn de gegevens vervolgens zo veel als mogelijk geactualiseerd tot de inwerkingtreding van hoofdstuk 11 van de Wet milieubeheer. Dat is wenselijk omdat zo maatregelen die getroffen zijn voor sanering in de periode tussen 2008 en het in werking treden van de wet, ook doorwerken in lagere geluidproductieplafonds. Hetzelfde geldt voor de vervanging van het dichte asfaltbeton (DAB) door het stillere Zeer Open Asfaltbeton (ZOAB). Door de gegevens te actualiseren zullen ook de lijsten met uitzonderingen op grond van het tweede lid van artikel 11.45 en het vierde lid van artikel 11.45 korter kunnen zijn. De gewenste actualisatie zal echter in de praktijk niet volledig mogelijk zijn. Er gaat immers enige tijd over heen voordat vernieuwingen en wijzigingen doorwerken in de systemen van de beheerder. De beschikbare systemen en gegevensbronnen bij de beheerder zijn bepalend voor de mate waarin deze actualisering mogelijk is. De Wet milieubeheer voorziet in een procedure voor herstel van onjuiste gegevens om relatief eenvoudig op een later moment bijvoorbeeld eventuele ontbrekende schermen, raildempers of ZOAB-wegverhardingen alsnog te verwerken in de van rechtswege ingevoerde geluidproductieplafonds (artikel 11.47).

Een uitzondering op de actualisering van gegevens vormen raildempers die zijn aangebracht vooruitlopend op de uitvoering van de sanering volgens afdeling 11.3.6 van hoofdstuk 11 van de Wet milieubeheer. Deze vormen namelijk een onderdeel van een mogelijk groter saneringspakket dat met de daarbij horende formele procedure moet worden vastgesteld en verwerkt in een daaraan gekoppelde wijziging van de betrokken geluidproductieplafonds. In theorie zou de beheerder tot de vaststelling van dit saneringspakket de geluidreductie van deze raildempers kunnen benutten voor groei. In de praktijk zal dit echter vrijwel onmogelijk zijn omdat de raildempers slechts over een beperkt deel van het spoortraject liggen. Direct aan weerszijde van de raildempers is geen ruimte voor die extra groei. In de praktijk kan de beheerder deze ruimte dan ook niet benutten. Bovendien garandeert het geldende geluidproductieplafond in de periode tot vaststelling van het saneringsplan dat de werkelijke geluidproductie niet hoger kan worden dan op grond van artikel 11.45, eerste lid, van de Wet milieubeheer toelaatbaar is. Omdat de omwonenden hierdoor afdoende beschermd is en in de praktijk benutting van de lokaal tijdelijk aanwezige extra geluidruimte vrijwel onmogelijk is, is afgezien expliciet te regelen dat deze raildempers uitgezonderd zijn voor berekenen voor het nalevingsverslag.

De Wet milieubeheer kent een zogenaamde ‘werkruimte’ waarmee de heersende geluidproductie wordt verhoogd. Deze werkruimte is 1,5 dB voor de bestaande wegen en spoorwegen waarvoor op grond van het eerste lid van artikel 11.45 het geluidproductieplafond wordt vastgesteld. Overigens kan er ook met andere waarden voor de werkruimte gerekend worden. Daarom wordt in dit voorschrift in plaats van werkruimte de meer neutrale term plafondcorrectiewaarde gebruikt.

De plafondcorrectiewaarde wordt gekoppeld aan de betreffende bronregisterlijnen waardoor de geluidemissie van die lijnen met de plafondcorrectiewaarde verhoogd wordt. Dit is geregeld in de artikelen 1.1, 3.8, 4.9, 5.3, 5.7, 5.8 van deze regeling. In de toelichting op deze artikelen is uitgelegd dat zo de plafondcorrectiewaarde correct doorwerkt in de hoogte van de geluidproductieplafonds op de referentiepunten en in berekeningen van de geluidproductie en de geluidsbelasting. Dat geldt ook voor berekeningen op punten die in de nabijheid van delen van wegen of spoorlijnen liggen met verschillende plafondcorrectiewaarden, zoals de zogenaamde combinatiereferentiepunten (zie toelichting op artikel 11.45 van de Wet milieubeheer).

Het tweede lid van artikel 11.45 voorziet in een mogelijkheid om af te wijken van de hoofdregel van het eerste lid (heersend + 1,5 dB). Naar verwachting zullen met name besluiten, zoals tracébesluiten, op deze wijze doorwerken in de hoogte van het geluidproductieplafond. Een belangrijk punt daarbij is de geografische begrenzing van het gebied waarin brongegevens en geluidproductieplafonds worden gebaseerd op dat besluit. Vaak zullen de formele grenzen van het (tracé)besluit krapper zijn dan het onderzoeksgebied van het bij het besluit behorende akoestische onderzoek. Zo is bij wegen veelal het onderzoeksgebied uitgebreid met een lengte van 1/3 van de geluidzone aan weerzijde van de formele tracébegrenzingen. In paragraaf 2.2 wordt bepaald dat buiten de formele grenzen alleen eventuele geluidbeperkende maatregelen uit het besluit in de brongegevens worden opgenomen. Verkeersgegevens, wegverhardingen, bovenbouw en bronregisterlijnen (rekening houdend met de regels uit paragraaf 1) worden dus binnen de formele grenzen van het besluit afgeleid uit het akoestische onderzoek dat ten grondslag lag aan het besluit. Zo ontstaat een uit het besluit afgeleide set brongegevens. Een berekening op basis van deze brongegevens leidt tot de geluidproductieplafonds. In het algemeen zal de plafondcorrectiewaarde voor de delen van wegen en spoorwegen die op basis van het tweede lid van artikel 11.45 van een geluidproductieplafond voorzien zijn, nul zijn. In bijzondere gevallen kan echter wel een waarde toegekend worden aan de plafondcorrectiewaarde. Een eventuele toezegging over bronmaatregelen kan bijvoorbeeld verwerkt worden in het geluidproductieplafond door een plafondcorrectiewaarde met een negatieve waarde op te nemen in de brongegevens.

Voor wegverkeer komt het voor dat recente besluiten geen gegevens over de voertuigaantallen bevatten voor de dag en/of de avondperiode. Deze gegevens zijn wel nodig omdat geluidproductieplafonds worden vastgesteld op basis van de nieuwe dosismaat Lden. Daarom zijn regels opgenomen waarmee vanuit de wel beschikbare gegevens een Lden-waarde bepaald kan worden.

Voor spoor kan de situatie zich voordoen dat in het besluit gerekend is met hogere snelheden dan de in bijlage IV genoemde maximale rekensnelheden. Een voorbeeld is de Tracébesluit van de HSL-Zuid. In het akoestisch onderzoek dat daar aan ten grondslag ligt, is gerekend met een snelheid van 220 km/uur voor treincategorie 8, terwijl in bijlage IV een maximale rekensnelheid is opgenomen van 160 km/uur. In dergelijke gevallen wordt in de brongegevens uitgegaan van de snelheid uit het besluit en wordt het geluidproductieplafonds dus berekend op basis van een hogere snelheid dan de maximale rekensnelheid. Op deze wijze wordt zo direct mogelijk aangesloten bij het besluit. Een gemeente die geluidsbelastingen wil bepalen zal ook dienen uit te gaan van deze snelheden, op grond van artikel 4.9.

Het kan voorkomen dat er later ontwikkelingen zijn die leiden tot een andere situatie dan is opgenomen in het (tracé)besluit. Indien dit gebaseerd is op overeenkomsten en er sprake is van extra te treffen geluidbeperkende maatregelen, kunnen die worden meegenomen in de bepaling van de geluidproductieplafonds. Voorbeelden zijn:

  • de plaatsing van een extra scherm (bijvoorbeeld door een scherm dat door de gemeente wordt gefinancierd voor een nieuwbouwplan of omdat de gemeente de maatregelen uit het tracébesluit onvoldoende vond).

  • toezeggingen over bronmaatregelen bijvoorbeeld de aanleg van een extra stil wegdek.

  • toezeggingen over aangepaste maximale snelheden.

Deze gevallen zullen per situatie moeten worden geanalyseerd. Als blijkt dat er een nauwe relatie is met het (tracé)besluit zijn de extra geluidbeperkende maatregelen te zien als een aanvulling op het recente (tracé)besluit. Het ligt voor de hand dat deze extra geluidbeperkende maatregelen dan ook doorwerken in de vastgestelde plafonds.

Het derde lid van artikel 11.45 van de Wet milieubeheer bepaalt dat bij toepassing van het eerste lid een geluidproductieplafond niet lager wordt vastgesteld dan 52,0 dB indien er geen afscherming plaatsvindt. Dit wordt geregeld door waarden die lager uitpakken dan 52,0 dB in het geluidregister te wijzigen in 52,0 dB voor die situaties waarin er geen scherm tussen het referentiepunt en de bron staat. In dit geval leidt een berekening van de geluidproductie in het referentiepunt op basis van de brongegevens dus niet tot de in het geluidregister opgenomen waarde van 52,0 dB maar een lagere waarde.

4.3. Bij hoofdstuk 3

[Regeling vervallen per 01-01-2024]

Dit hoofdstuk bevat aanvullende regels voor de berekening van de geluidproductie voor het jaarlijkse nalevingsverslag (artikel 11.22 van de Wet milieubeheer). Daarbij is geregeld dat in de berekening wordt uitgegaan van de verkeersgegevens die representatief zijn voor het kalenderjaar. Dat betekent een gemiddelde verkeersintensiteit over het kalenderjaar waarover verslag wordt gedaan. Hetzelfde geldt voor de representatieve snelheden. Dit sluit aan bij de geluidmaat Lden, die betrekking heeft op een jaargemiddelde.

Voor de overige gegevens, zoals de geografische en technische kenmerken van de infrastructuur, wordt uitgegaan van de situatie op de laatste kalenderdag van het jaar. Dit is gedaan omdat deze factoren niet zijn de middelen over een kalenderjaar en bovendien zo wordt aangesloten bij de meest recente situatie.

Voor de afschermende objecten bepaalt de Wet milieubeheer al dat alleen in het geluidregister opgenomen afschermende objecten mogen worden meegenomen in de berekening van de geluidproductie. In deze regeling wordt daar nog aan toegevoegd dat het gaat om de afschermende objecten die op de laatste kalenderdag van het jaar in het register zijn opgenomen en dat die afschermende objecten op die datum ook daadwerkelijk gebouwd moeten zijn. Dit is gedaan om enerzijds te voorkomen dat in het verslag gerekend wordt met geluidsschermen die in werkelijkheid (nog) niet gebouwd zijn, en anderzijds geldt de laatste kalenderdag als peildatum om zo aan te sluiten bij de meest actuele situatie. De koppeling van de afschermende objecten met het geluidregister, betekent overigens ook een koppeling met de geluidproductieplafonds. De afschermende objecten uit het register werken immers direct door in de hoogte van het geluidproductieplafonds. Daarom is het logisch nodig dat de berekende geluidproductie over het betreffende kalenderjaar vergeleken wordt met het geluidproductieplafond dat op de laatste dag van dat kalenderjaar is opgenomen in het geluidregister.

Bijlage VI. behorende bij de artikelen 5.7, vierde lid, en 5.8, vierde lid, van het Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024]

Geluidberekeningen voor saneringsplannen

[Regeling vervallen per 01-01-2024]

1. Berekeningen ten behoeve van het saneringsplan

[Regeling vervallen per 01-01-2024]

1.1. Eenvoudige methode

[Regeling vervallen per 01-01-2024]

Bij de bepaling van geluidsbelastingen om vast te stellen dat:

  • I. een object geen saneringsobject is,

  • II. een mogelijk saneringsobject niet in aanmerking komt voor maatregelen, mogen wijzigingen, waaronder vereenvoudigingen, in de rekenmethode of de invoergegevens worden doorgevoerd als dat niet leidt tot een onderschatting van de geluidsbelastingen ten opzichte van de geluidsbelastingen zoals die op basis van artikel 5.7, eerste lid, dan wel artikel 5.8, eerste lid, zouden zijn bepaald.

1.2. Rekenpunten

[Regeling vervallen per 01-01-2024]

  • a. Een rekenpunt waarop de geluidsbelasting wordt bepaald, kan betrekking hebben op een groep saneringsobjecten, mits daarbij geen onderschatting van de geluidsbelastingen op de individuele objecten kan plaatsvinden.

  • b. De hoogte van een rekenpunt voor één of meer saneringsobjecten is gelijk aan of hoger dan de representatieve waarneemhoogte van elk van de saneringsobjecten.

1.3. Spoorbruggen

[Regeling vervallen per 01-01-2024]

Spoorbruggen mogen op eenzelfde wijze behandeld worden als beschreven is in paragraaf 1.2.3.2 van bijlage V van deze regeling met uitzondering van het gestelde over schermen op betonnen kunstwerken met een hoogte die groter is dan 2 meter. Voor het bepalen van het effect van dergelijke schermen gelden de regels uit bijlage IV van deze regeling.

1.4. Rekening houden met de actuele ligging of configuratie van weg of spoorweg bij afweging saneringsmaatregelen

[Regeling vervallen per 01-01-2024]

  • 1. Indien de ligging of configuratie van een weg of spoorweg, zoals deze blijkt uit de brongegevens welke zijn opgenomen in het geluidregister, afwijkt van de daadwerkelijke of geprojecteerde ligging of configuratie van die weg of spoorweg, kan in een akoestisch onderzoek in het kader van de afweging van saneringsmaatregelen gebruik gemaakt worden van gegevens die overeenkomen met die daadwerkelijke of geprojecteerde ligging of configuratie van de weg of spoorweg.

  • 2. Wanneer gebruik gemaakt wordt van gegevens die overeenkomen met die daadwerkelijke of geprojecteerde ligging of configuratie van de weg of spoorweg dienen op de hieronder beschreven wijze op nieuwe of veranderde bronregisterlijnen de overige relevante brongegevens te worden aangepast of toegevoegd.

  • 3. Er zijn drie situaties waar deze werkwijze van toepassing kan zijn:

    • a. verwijdering van bronregisterlijnen;

    • b. toevoeging van bronregisterlijnen;

    • c. gewijzigde ligging van bronregisterlijnen.

  • 4. In de hierboven genoemde situaties worden de volgende te wijzigen brongegevens in het akoestisch onderzoek meegenomen:

    Hierbij geldt dat de intensiteitsgegevens bij de bestaande geluidproductieplafonds worden herverdeeld over de daadwerkelijke of geprojecteerde bronregisterlijnen.

  • 5. Wanneer de gebruikmaking van gewijzigde brongegevens, die overeenkomen met die daadwerkelijke of geprojecteerde ligging of configuratie van de weg of spoorweg, leidt tot een toename van de geluidproductie op een of meerdere referentiepunten ten opzichte van het geldende geluidproductieplafond, wordt deze toename gecompenseerd door de plafondcorrectiewaarde zodanig naar beneden bij te stellen dat niet langer sprake is van een dergelijke toename op de betreffende referentiepunten.

  • 6. Een bronmaatregel die feitelijk is gerealiseerd of waartoe is besloten door de minister of de beheerder met het oog op naleving van de geluidproductieplafonds, maar die niet is opgenomen in het geluidregister, wordt niet afgewogen als saneringsmaatregel. Deze maatregel wordt ook niet als te wijzigen brongegeven meegenomen in het akoestisch onderzoek voor de berekening van de te wijzigen geluidproductieplafonds als gevolg van de vaststelling van (andere) saneringsmaatregelen in een saneringsplan.

2. Het akoestische onderzoek voor het saneringsplan

[Regeling vervallen per 01-01-2024]

Het rapport van het akoestische onderzoek voor het saneringsplan bevat, aanvullend op de eisen aan de rapportage, genoemd in bijlage I bij het Reken- en meetvoorschrift geluid 2012, ten minste:

  • a. de begrenzing van de weggedeelten of spoorweggedeelten waarop het onderzoek betrekking heeft;

  • b. een vermelding van de gebruikte rekenmethode;

  • c. de saneringsobjecten die onderdeel van het onderzoek zijn;

  • d. voor zover zij niet vallen onder onderdeel c, de objecten langs wegen en spoorwegen die op de geluidplafondkaart zijn aangegeven, die op grond van artikel 88 van de Wet geluidhinder, zoals dat luidde voor 1 januari 2007, of artikel 4.17 van het Besluit geluidhinder bij Onze Minister tijdig zijn gemeld, met een onderbouwing waarom deze objecten geen saneringsobjecten op grond van hoofdstuk 11 van de Wet milieubeheer zijn.

  • e. de geluidsbelastingen van de objecten, bedoeld in onderdeel c, bij volledige benutting van het geldende geluidproductieplafond;

  • f. de wijze en resultaten van de toepassing van het criterium, bedoeld in artikel 11.29, vierde lid, van de Wet milieubeheer;

  • g. de waarden van de betrokken geluidproductieplafonds na de uitvoering van de saneringsmaatregelen;

  • h. de geluidsbelastingen van de saneringsobjecten bij volledige benutting van het geluidproductieplafond na uitvoering van het saneringsplan, en

  • i. de brongegevens die op grond van paragraaf 1.4 zijn toegepast bij de afweging van de saneringsmaatregelen.

3. Toelichting

[Regeling vervallen per 01-01-2024]

Sanering betreft een aanpak van de hoogste geluidsbelastingen. Het gaat daarbij om relatief kleine aantallen woningen dicht op de bron. Met de inwerkingtreding van de wet van 24 november 2011 houdende wijziging van de Wet milieubeheer in verband met de invoering van geluidproductieplafonds en de overheveling van hoofdstuk IX van de Wet geluidhinder naar de Wet milieubeheer5 krijgen de weg- en de spoorbeheerder de plicht om een groot deel van zijn netwerk te voorzien van een saneringsplan. Vanwege de grote omvang kan de beheerder dit gefaseerd aanpakken en tussen nu en 2020 elk jaar delen van zijn netwerk van een saneringsplan voorzien.

Eerste stap

De eerste stap die een beheerder zet, zal het opsporen van de saneringsobjecten zijn. Voor delen van zijn bron waarlangs zich geen saneringsobjecten bevinden, zal het saneringsplan beperkt kunnen blijven tot deze constatering en de onderbouwing daarvan, omdat geluidbeperkende maatregelen dan niet in aanmerking komen. Voor het opsporen van saneringsobjecten is het nodig geluidsbelastingen te bepalen van objecten langs de bron. Het gaat immers om de objecten die zijn genoemd in artikel 11.57, eerste lid, van de Wet milieubeheer. Voor vaststelling van de in artikel 11.57, onderdeel a, genoemde objecten is een toets van de geluidsbelasting aan de waarde van 60 dB voor wegen en 65 dB voor spoorwegen nodig. Evenzo is voor de in artikel 11.57, onderdeel b, genoemde objecten een toets van de geluidsbelasting nodig aan de waarden van 65 dB voor een weg en 70 dB voor een spoor. En voor de in artkel 11.57, onderdeel c, genoemde objecten moet worden getoetst aan de waarde van 55 dB voor wegen en 60 dB voor spoorwegen.

Vanwege de grote omvang en werklast, alsmede vanwege de dichte ligging op de bron, is het toegestaan volgens een eenvoudigere methode geluidsbelastingen te bepalen dan bij normale toepassing van hoofdstuk 5 van deze regeling, mits toepassing van zo’n eenvoudigere methode niet leidt tot een onderschatting van de geluidsbelastingen ten opzichte van de geluidsbelastingen zoals die op basis van artikel 5.7, eerste lid, dan wel artikel 5.8, eerste lid, zouden zijn bepaald. In het saneringsplan of het akoestisch onderzoek moet worden onderbouwd dat aan deze voorwaarde wordt voldaan. Er zal geen sprake zijn van onderschattingen als de standaardkarteringsmethode (SKM), zoals voorheen opgenomen in bijlage VII van het Reken- en meetvoorschrift geluid 2012, wordt toegepast, mits daarbij de voorwaarden, zoals voorheen opgenomen in paragraaf 1.1 van bijlage VI van het Reken- en meetvoorschrift geluid 2012, in acht worden genomen.

De hiervoor beschreven eenvoudigere methode mag worden benut om:

  • 1. vast te stellen dat een object geen saneringsobject is, en

  • 2. met het doelmatigheidscriterium vast te stellen dat voor een mogelijk saneringsobject geluidperkende maatregelen niet in aanmerking komen. Dit kan door een eenvoudige vergelijking van de reductiepunten van het saneringsobject (of het cluster saneringsobjecten) met de benodigde maatregelpunten voor de kleinst denkbare zinvolle geluidbeperkende maatregel.

De beheerder kan dus met de eenvoudigere methode snel vaststellen voor welke delen van zijn bron de saneringstaak beperkt is tot het naleven van de binnenwaarde van saneringsobjecten. Het saneringsplan kan voor deze delen van de bron worden opgesteld op basis van de geluidsbelastingen die bepaald zijn met de eenvoudigere methode.

Tweede stap

De tweede stap bestaat uit een verfijning voor de overige delen van de bron. Het betreft het bepalen geluidsbelastingen met de normale methode van het voorschrift (artikel 5.7, tweede lid, en artikel 5.8, tweede lid). Op grond hiervan wordt conform artikel 11.57 van de Wet milieubeheer vastgesteld welke saneringsobjecten aanwezig zijn en wat de geluidsbelastingen zijn. Indien geen gebruik wordt gemaakt van de vereenvoudigde bepalingsmethode, heeft deze stap betrekking op alle delen van de bron (en is de hiervoor beschreven eerste stap dus overgeslagen).

In deze tweede stap is het ook toegestaan voor de in de eerste stap gevonden saneringsobjecten een tweede berekening te maken met de normale methode van het voorschrift (artikel 5.7, tweede lid, en artikel 5.8, tweede lid). Deze meer nauwkeurige bepaling van de geluidsbelasting zal meestal lager zijn omdat de eenvoudige methode uit stap 1 zo is ingericht dat die leidt tot een overschatting van de geluidsbelasting. De meer nauwkeurige geluidsbelasting is dan de basis voor het saneringsplan en voor de toets aan de binnenwaarde.

Derde stap

De derde stap is het bepalen van de maatregelen die in aanmerking komen voor het reduceren van de geluidsbelastingen op de saneringsobjecten. Voor deze stap zijn voor de bepaling van de geluidsbelasting wederom de normale regels van dit voorschrift van kracht (artikel 5.7, tweede lid, en artikel 5.8, tweede lid). De maatregelen worden bepaald volgens het criterium, bedoeld in artikel 11.29, vierde lid, van de Wet milieubeheer, het zogenoemde doelmatigheidscriterium, met toepassing van de streefwaarde uit artikel 11.59 van de Wet milieubeheer.

Vereenvoudigingen rekenpunten

Berekeningen worden uitgevoerd op zogenaamde rekenpunten. Die punten zullen over het algemeen liggen op de gevels van geluidsgevoelige objecten. Ook bij de keuze van rekenpunten zijn vereenvoudigingen toegestaan. Zo is het bijvoorbeeld niet nodig op elk saneringsobject één berekening te maken. Er mag gewerkt worden met rekenpunten die betrekking op een groep saneringsobjecten. Daarbij is wel een borging ingebouwd dat dit niet kan leiden tot een onderschatting van de niveaus. Hetzelfde geldt voor de hoogte van de rekenpunten. De representatieve waarneemhoogte voor de betreffende objecten mag niet hoger zijn de hoogte waarop gerekend is. Ook hierdoor is geborgd dat er geen onderschatting van de niveaus zal optreden. De beheerder kan hierdoor in eerste instantie met bijvoorbeeld twee standaardhoogten werken en pas als maatregelen doelmatig lijken, eventueel verder gaan detailleren. Dit alles verlaagt de uitvoeringslasten van de saneringsoperatie.

Rekening houden met de actuele ligging of configuratie van weg of spoorweg bij afweging saneringsmaatregelen

De beheerder voert voor het saneringsplan een akoestisch onderzoek uit, waarin worden berekend:

  • de geluidsbelasting bij volledig benut geluidproductieplafond (verder genoemd: ‘saneringswaarde’);

  • de geluidsbelasting na het treffen van saneringsmaatregelen.

Voor de bepaling van de saneringswaarde gaat de beheerder uit van de brongegevens uit het geluidregister, ook wanneer de werkelijke ligging of configuratie van de (spoor)weg hiermee niet in overeenstemming is. Voor het maatregelenonderzoek kan echter worden uitgegaan van de werkelijke ligging of configuratie van de (spoor)weg, want de ligging of configuratie kan dusdanig gewijzigd zijn ten opzichte van de brongegevens uit het geluidregister dat het werken met de gegevens uit het geluidregister geen reële afweging van saneringsmaatregelen zou opleveren. Het gaat hier alleen om de geografische ligging of de configuratie van de (spoor)weg. Er kunnen rijlijnen zijn bijgekomen of zijn verdwenen of zijn verschoven (x, y, z-coördinaten), en er kunnen configuratiegegevens zijn gewijzigd zoals de wegbreedte of aantal en ligging van wissels. Deze wijzigingen moet de beheerder kunnen meenemen om te voorkomen dat een geluidscherm anders geografisch op een onjuiste positie zou komen te staan (bijvoorbeeld bovenop een nieuw spoor of een nieuwe rijstrook, of juist heel ver van de (spoor)weg vandaan, of ergens in de lucht of onder de grond). De beheerder is echter niet verplicht om elke gewijzigde ligging of configuratie van de (spoor)weg mee te nemen in het maatregelenonderzoek.

Indien in het maatregelenonderzoek het aantal (spoor)wegen (rijlijnen) gewijzigd is, dienen de aan de (spoor)weg gekoppelde verkeersintensiteiten aangepast te worden. De totale verkeersintensiteit wordt over het nieuwe aantal rijlijnen herverdeeld, volgens de oorspronkelijk bij de vaststelling van de geluidproductieplafonds gehanteerde aanpak. Elke nieuwe rijlijn dient voorzien te zijn van aanvullende gegevens. Deze gegevens dienen zodanig aangevuld te worden dat zoveel mogelijk wordt aangesloten bij de bestaande brongegevens, maar eveneens recht wordt gedaan aan de werkelijke situatie.

Door het herverdelen van verkeersintensiteiten, en in het geval van nieuwe rijlijnen door het toevoegen van nieuwe gegevens aan de rijlijnen, kan in theorie een ‘geluidruimtewinst’ voor de beheerder ontstaan. Bijvoorbeeld: wanneer de bestaande brongegevens drie rijlijnen bevatten, en één van de buitenste rijlijnen is inmiddels opgeheven, dan wordt de verkeersintensiteit verdeeld over de twee resterende rijlijnen. Dit kan ertoe leiden dat aan één kant van de (spoor)weg de geluidproductie op basis van de nieuwe brongegevens groter is dan het bestaande geluidproductieplafond en aan de andere kant juist kleiner. Verder rekenen zonder de plafondcorrectiewaarde aan te passen, zou betekenen dat wordt gedaan alsof het geluidproductieplafond aan één kant hoger is dan de geldende waarde. Aan die kant zouden daardoor ook op woningen en andere geluidsgevoelige objecten hogere saneringswaarden kunnen optreden dan op grond van de oude brongegevens mogelijk was.

Het is daarom verplicht om na het eventueel wijzigen van brongegevens vanwege een gewijzigde ligging of configuratie van de (spoor)weg te toetsen of dit tot overschrijding zou leiden van geldende geluidproductieplafonds. Deze toets wordt uitgevoerd voordat wordt begonnen met de afweging van de saneringsmaatregelen. Indien uit deze toets op één of meerdere referentiepunten een overschrijding van een of meer geluidproductieplafonds ontstaat, dan dient de plafondcorrectiewaarde op de rijlijnen zodanig te worden aangepast dat deze overschrijding teniet gedaan wordt. Het is aan de beheerder of hij de plafondcorrectiewaarde zodanig gedetailleerd aanpast dat zo min mogelijk geluidruimte wordt ingeleverd, of dat de beheerder wat minder nauwkeurig te werk gaat. Met de aanpassing van de plafondcorrectiewaarde wordt in elk geval bereikt dat de gewijzigde brongegevens vanwege een gewijzigde ligging of configuratie van de (spoor)weg na de sanering nergens meer geluidruimte zullen opleveren dan de geluidruimte die op grond van de bestaande brongegevens al bestond, voorafgaand aan de sanering.

De plafondcorrectiewaarde mag niet worden aangepast om te voorkomen dat de geluidruimte kleiner wordt door het wijzigen van brongegevens vanwege een gewijzigde ligging of configuratie van de (spoor)weg. Dat verlies aan geluidruimte is immers het gevolg van de eerdere beslissing van de beheerder om de ligging van rijlijnen aan te passen zonder wijziging van de geluidproductieplafonds.

In het akoestisch onderzoek wordt het resultaat van deze geluidproductieplafond-toets opgenomen en wordt precies aangegeven waar en met welke waarde(n) de plafondcorrectiewaarde wordt aangepast. Dat vloeit voort uit het nieuwe onderdeel i van hoofdstuk 2 van deze bijlage.

Het maatregelenonderzoek naar saneringsmaatregelen wordt vervolgens verder uitgevoerd met de aangepaste brongegevens vanwege een gewijzigde ligging of configuratie van de (spoor)weg, waaronder dus ook de aangepaste plafondcorrectiewaarde(n). In het maatregelenonderzoek kan verdere aanscherping van de plafondcorrectiewaarde (geluidcapaciteitsanering voor geluidsanering) als saneringsmaatregel worden meegenomen.

Hierbij kan de situatie zich voordoen dat in de brongegevens van het geluidregister geen maatregelen zoals raildempers of stil wegdek zijn opgenomen, maar dat deze maatregelen in de praktijk al wel zijn genomen of dat daartoe is besloten door de minister of de beheerder. Deze maatregelen worden niet afgewogen als saneringsmaatregelen, aangezien het effect van deze maatregelen al is bestemd voor de naleving van de geldende geluidproductieplafonds. Een voorwaarde hiervoor is wel dat in een tracébesluit of een besluit tot wijziging van de geluidproductieplafonds besloten is tot de maatregel of dat de beheerder in het nalevingsverslag hiervan melding heeft gemaakt. Deze maatregelen hoeven dan ook niet vanwege het besluit tot een andere saneringsmaatregel alsnog in de berekening van de geluidproductieplafonds te worden meegenomen.

Bij de berekening van de nieuwe geluidproductieplafonds op basis van artikel 5.5 worden daarom de volgende gegevens opgenomen in het geluidregister:

  • voor zover van toepassing, de gewijzigde brongegevens als bedoeld in paragraaf 1.4:

    • de gewijzigde ligging van de rijlijnen;

    • de herverdeelde verkeersintensiteiten;

    • de aan nieuwe rijlijnen van wegen of sporen toegekende aanvullende gegevens (snelheden, bovenbouw, wegdektype, etc);

    • de gewijzigde plafondcorrectiewaarde (mogelijk dus een combinatie van een verplichte wijziging en een wijziging als saneringsmaatregel);

  • de overige saneringsmaatregelen (b.v. geluidschermen, raildempers, stil wegdek, betonnen dwarsliggers, aangepaste brugtoeslag).

Bijlage VII. behorende bij hoofdstuk 7 van het Reken- en meetvoorschrift geluid 2012

[Regeling vervallen per 01-01-2024]

Inhoud:

1.

Inleiding

2.

Rekenmethode

 

2.1

Algemene bepalingen

   

2.1.1

Indicatoren, frequentiebereik en banddefinities

   

2.1.2

Kwaliteitskader

 

2.2

Wegverkeerslawaai

   

2.2.1

Bronbeschrijving

   

2.2.2

Referentieomstandigheden

   

2.2.3

Rolgeluid

   

2.2.4

Aandrijfgeluid

   

2.2.5

Effect van de versnelling en vertraging van voertuigen

   

2.2.6

Effect van het type wegdek

   

2.2.7

Emissiekentallen wegverkeer

 

2.3

Spoorweglawaai

   

2.3.1

Bronbeschijving

   

2.3.2

Geluidsvermogensemissie

   

2.3.3

Aanvullende effecten

   

2.3.4

Emissies

 

2.4

Industrielawaai

   

2.4.1

Bronbeschrijving

 

2.5

Berekening van geluidsvoortplanting voor weg-, spoor- en industriebronnen

   

2.5.1

Omvang en toepasselijkheid methode

   

2.5.2

Gebruikte definities

   

2.5.3

Geometrische overwegingen

   

2.5.4

Model voor geluidsvoortplanting

   

2.5.5

Berekeningsproces

   

2.5.6

Berekening van geluidsvoortplanting voor weg-, spoor-, industriebronnen

 

2.6

Geluidsniveau en bevolking aan gebouwen toewijzen

3.

Meetmethoden

1. Inleiding

[Regeling vervallen per 01-01-2024]

De waarden van de geluidsbelasting, Lden en Lnight, worden op de waarneempunten bepaald door berekening volgens de rekenmethode en de gegevens zoals uiteengezet in hoofdstuk 2. Metingen kunnen volgens de in hoofdstuk 3 weergegeven methoden worden verricht.

2. Rekenmethode

[Regeling vervallen per 01-01-2024]

2.1. Algemene bepalingen

[Regeling vervallen per 01-01-2024]

2.1.1. Indicatoren, frequentiebereik en banddefinities

[Regeling vervallen per 01-01-2024]

Berekeningen van de geluidsbelasting worden in het frequentiegebied van 63 Hz tot 8 kHz octaafbanden bepaald. De resultaten van de frequentieband worden op het overeenkomstige frequentie-interval verstrekt.

Berekeningen worden voor wegverkeerslawaai, spoorweglawaai en industrielawaai in octaafbanden uitgevoerd, met uitzondering van het geluidsvermogen van de bron van spoorweglawaai, dat van tertsbanden gebruikmaakt. Voor wegverkeerslawaai, spoorweglawaai en industrielawaai wordt, op basis van de resultaten van deze octaafband, het A-gewogen gemiddelde geluidsniveau over lange termijn voor de dag, de avond en nachtperiode, als vastgesteld in bijlage I en bedoeld in artikel 5 van Richtlijn 2002/49/EG, berekend door de methode beschreven in de punten 2.1.2, 2.2, 2.3, 2.4 en 2.5. Voor het weg- en spoorwegverkeer in agglomeraties wordt het A-gewogen gemiddelde geluidsniveau op lange termijn bepaald op basis van de bijdragen daaraan van de daarin gelegen weg- en spoorwegsegmenten, met inbegrip van de grote wegen en de grote spoorwegen.

Bijlage 267849.png

(2.1.1)

waarbij

Ai de A-gewogen correctie volgens IEC 61672-1 aanduidt,

i de frequentieband-index is,

en T de tijdsperiode is die overeenkomt met dag, avond of nacht.

Geluidsparameters zijn:

Lp

Niveau van momentane geluidsdruk

[dB]

(re. 2 10-5 Pa)

LAeq,LT

Globaal langdurig geluidsniveau LAeqals gevolg van alle bronnen en spiegelbronnen op punt R

[dB]

(re. 2 10-5 Pa)

LW

In situ geluidsvermogensniveau van een puntbron (bewegende of stilstaande)

[dB]

(re. 10-12 W)

LW,i,dir

Richtingsafhankelijk in situ geluidsvermogensniveau voor de i-de-frequentieband

[dB]

(re. 10-12 W)

LW’

Gemiddelde in situ geluidsvermogensniveau per meter bronlijn

[dB/m]

(re. 10-12 W)

Andere fysische parameters zijn:

p

Effectieve waarde van de momentane geluidsdruk

[Pa]

p0

Referentiegeluidsdruk = 2 10-5 Pa

[Pa]

W0

Referentiegeluidsvermogen = 10-12 W

[Watt]

2.1.2. Kwaliteitskader

[Regeling vervallen per 01-01-2024]

Nauwkeurigheid van invoerwaarden

Alle invoerwaarden die het emissieniveau van een bron beïnvloeden, worden bepaald met ten minste de nauwkeurigheid die overeenkomt met een onzekerheid van ± 2dB(A) in het emissieniveau van de bron (waarbij alle andere parameters ongewijzigd blijven).

Gebruik van standaardwaarden

Bij de toepassing van de in dit hoofdstuk weergegeven methode geven de invoergegevens het werkelijke verbruik weer. In principe wordt geen gebruik gemaakt van standaardinvoerwaarden of veronderstellingen. Standaardinvoerwaarden en veronderstellingen worden geaccepteerd indien de verzameling van werkelijke gegevens met onevenredig hoge kosten gepaard gaat.

De kwaliteit van de software die voor de berekeningen wordt gebruikt

Voor de software die voor de berekeningen wordt gebruikt, moet worden bewezen dat aan de hierbij beschreven methode is voldaan, en wel door middel van certificering van resultaten tegen testcases.

2.2. Wegverkeerslawaai

[Regeling vervallen per 01-01-2024]

2.2.1. Bronbeschrijving

[Regeling vervallen per 01-01-2024]

Indeling van voertuigen

De bron van wegverkeerslawaai wordt vastgesteld door de geluidsemissies van alle individuele voertuigen van de verkeersstroom te combineren. Deze voertuigen worden ingedeeld in vier verschillende categorieën met betrekking tot de kenmerken van hun geluidsemissie:

Categorie 1: Lichte motorvoertuigen

Categorie 2: Middelzware voertuigen

Categorie 3: Zware voertuigen

Categorie 4: Gemotoriseerde tweewielers

Bij gemotoriseerde tweewielers worden twee afzonderlijke subcategorieën gedefinieerd voor bromfietsen en krachtigere motorfietsen, omdat zij in zeer verschillende rij-modi functioneren en hun aantallen meestal sterk uiteenlopen.

Gebruik van de eerste vier categorieën is verplicht. Er wordt rekening gehouden met de mogelijkheid dat in de toekomst nieuwe voertuigen worden ontwikkeld waarvan de geluidsemissies dusdanig anders zijn dat een extra categorie moet worden vastgesteld. Deze categorie kan betrekking hebben op, bijvoorbeeld, elektrische of hybride voertuigen of andere voertuigen die in de toekomst worden ontwikkeld en die wezenlijk verschillen van de voertuigen in de categorieën 1 tot en met 4.

De bijzonderheden van de verschillende voertuigcategorieën worden in tabel 2.2.a vermeld.

Tabel 2.2.a Voertuigklassen

Categorie

Naam

 

Beschrijving

Voertuigcategorie in EU Goedkeuring van volledige voertuigen1

1

Lichte motorvoertuigen

 

Personenauto's, bestelwagens ≤ 3,5 ton, SUV's2, MPV's3, waaronder aanhangers en caravans

M1 en N1

2

Middelzware voertuigen

 

Middelzware voertuigen, bestelwagens > 3,5 ton, bussen, campers enz., met twee assen en dubbele banden op de achteras

M2, M3 en N2, N3

3

Zware voertuigen

 

Zware bedrijfsvoertuigen, touringcars, bussen, met drie of meer assen

M2 en N2 met aanhangwagen, M3 en N3

4

Gemotoriseerde tweewielers

 

4a

Bromfietsen met twee, drie of vier wielen

L1, L2, L6

 

4b

Motorfietsen met of zonder zijspan, driewielers en vierwielers

L3, L4, L5, L7

1 Richtlijn 2007/46/EG van het Europees parlement en de Raad van 5 september 2007 tot vaststelling van een kader voor de goedkeuring van motorvoertuigen en aanhangwagens daarvan en van systemen, onderdelen en technische eenheden die voor dergelijke voertuigen zijn bestemd (PBEU, 2007, L 263, van 9 oktober 2007).

2 Sport Utility Vehicles.

3 Multifunctionele voertuigen.

Aantal en plaats van equivalente geluidsbronnen

In dit model wordt elk voertuig (categorieën 1, 2, 3, 4a en 4b) weergegeven met één enkele puntbron die gelijkmatig afstraalt. De eerste reflectie op het wegdek wordt impliciet behandeld. Zoals afgebeeld in figuur 2.2.a, wordt deze puntbron 0,05 m boven het wegdek geplaatst.

Bijlage 267850.png
Figuur 2.2.a, Locatie van equivalente puntbron op lichte voertuigen (categorie 1), zware voertuigen (categorieën 2 en 3) en tweewielers (categorie 4)

De verkeersstroom wordt door een bronlijn weergegeven. Bij het modelleren van een weg met meerdere rijbanen, wordt elke rijbaan idealiter door een bronlijn in het midden van elke rijbaan weergegeven. Het is echter ook aanvaardbaar om één bronlijn in het midden van een tweebaansweg of één bronlijn per rijbaan in de buitenste baan van meerbaanswegen te modelleren.

2.2.1a. Geluidsvermogensemissie

[Regeling vervallen per 01-01-2024]

Inleiding

Het geluidsvermogen van de bron wordt in het ‘half-vrije veld’ gedefinieerd, aldus omvat het geluidsvermogen het effect van de reflectie van de grond onmiddellijk onder de gemodelleerde bron waar zich geen verstorende objecten in de onmiddellijke omgeving bevinden, met uitzondering van de reflectie op het wegdek niet onmiddellijk onder de gemodelleerde bron.

Verkeersstroom

De geluidsemissie van een verkeersstroom wordt weergegeven door een bronlijn, gekenmerkt door haar richtingsafhankelijk geluidsvermogen per meter per frequentie. Dit komt overeen met de som van de geluidsemissie van de individuele voertuigen in de verkeersstroom, rekening houdend met de tijd die de voertuigen in het beschouwde wegvak zijn. De uitvoering van het individuele voertuig in de stroom vereist de toepassing van een verkeersstroommodel.

Als een constante verkeersstroom van Qm voertuigen van categorie m per uur wordt verondersteld, met een gemiddelde snelheid νm (in km/h), wordt het richtingsafhankelijk geluidsvermogen per meter in de frequentieband i van de bronlijn LW’,eq,lijn,i,m bepaald door:

Bijlage 267851.png

(2.2.1)

waarbij LW,i,m het gerichte geluidsvermogen van een enkel voertuig is. LW’,m wordt uitgedrukt in dB (re. 10-12 W/m). Deze geluidsvermogensniveaus worden berekend voor elke octaafband i van 63 Hz tot en met 8 kHz.

De verkeersstroomgegevens Qm worden als jaargemiddelde per uur, per tijdsperiode (dag-avond-nacht), per voertuigklasse en per bronlijn uitgedrukt. Voor alle categorieën worden verkeersstroom-invoergegevens afkomstig van verkeerstelling of verkeersmodellen gebruikt.

De snelheid νm is een representatieve snelheid per voertuigcategorie: in de meeste gevallen is dat de wettelijke maximumsnelheid voor het wegvak of, als dit lager is, de wettelijke maximumsnelheid voor de voertuigcategorie.

Individueel voertuig

Aangenomen wordt dat alle voertuigen van categorie m in de verkeersstroom op dezelfde snelheid rijden, dat wil zeggen νm.

Een wegvoertuig wordt gemodelleerd door een aantal wiskundige vergelijkingen die de twee belangrijkste bronnen van lawaai weergeven:

  • 1. rolgeluid als gevolg van de wisselwerking tussen band en wegoppervlak;

  • 2. aandrijfgeluid veroorzaakt door de aandrijflijn (motor, uitlaat enz.) van het voertuig.

Aerodynamisch geluid wordt in de bron van het rolgeluid opgenomen.

Voor lichte, middelzware en zware voertuigen (categorieën 1, 2 en 3) komt het totale geluidsvermogen overeen met de energetische som van het rolgeluid en het aandrijfgeluid. Het totale geluidsvermogensniveau van de bronlijnen m = 1, 2 of 3 wordt dus gedefinieerd door:

Bijlage 267852.png

(2.2.2)

waarbij LWR,i,m het geluidsvermogensniveau voor rolgeluid en LWP,i,m het geluidsvermogensniveau voor aandrijfgeluid is. Dit geldt voor alle snelheidsbereiken.

Voor snelheden minder dan 20 km/h heeft het totale geluidsvermogen voor een voertuig hetzelfde geluidsvermogensniveau als door de formule voor νm = 20 km/h wordt bepaald.

Voor tweewielers (categorie 4) wordt alleen aandrijfgeluid aangemerkt voor de bron:

LWR,i,m =4 m= 4) = LWP,i,m=4m= 4)

(2.2.3)

Dit geldt voor alle snelheidsbereiken. Voor snelheden minder dan 20 km/h heeft het totale geluidsvermogen voor een voertuig hetzelfde geluidsvermogensniveau als door de formule voor νm = 20 km/h wordt bepaald.

2.2.2. Referentieomstandigheden

[Regeling vervallen per 01-01-2024]

De bronvergelijkingen en coëfficiënten gelden voor de volgende referentieomstandigheden:

  • een constante voertuigsnelheid,

  • een vlakke weg,

  • een luchttemperatuur van τref = 20°C,

  • een virtueel referentiewegdek, bestaand uit gemiddeld dicht asfaltbeton 0/11 en steenmastiekasfalt 0/11, tussen 2 en 7 jaar oud en in een representatieve onderhoudstoestand,

  • een droog wegdek,

  • geen spijkerbanden.

2.2.3. Rolgeluid

[Regeling vervallen per 01-01-2024]

Algemene vergelijking

Het geluidsvermogensniveau van rolgeluid in de frequentieband i voor een voertuig van categorie m = 1, 2 of 3 wordt gedefinieerd als:

Bijlage 267853.png

(2.2.4)

De coëfficiënten AR,i,m en BR,i,m worden voor elke voertuigcategorie in octaafbanden en voor een referentiesnelheid νref = 70 km/h gegeven. ∆LWR,i,m stemt overeen met de som van de correctiecoëfficiënten die worden toegepast op de rolgeluidemissie voor specifieke weg- of voertuigomstandigheden die van de referentieomstandigheden afwijken:

∆LWR,i,m = ∆LWR,road,i,m + ∆LWR,acc,i,m + ∆LW,temp

(2.2.5)

∆LWR,road,i,m verdisconteert het effect op het rolgeluid van een wegdek met akoestische eigenschappen die verschillen van die van het virtuele referentiewegdek zoals gedefinieerd in hoofdstuk 2.2.2. Dit omvat zowel het effect op voortplanting als het effect op emissie.

∆LWR,acc,i,m verdisconteert het effect op het rolgeluid van een kruising met verkeerslichten of een rotonde. Het integreert het effect van de snelheidsvariatie op de geluidsbelasting.

∆LW,temp is een correctieterm voor een gemiddelde temperatuur τ die verschilt van de referentietemperatuur τref = 20°C.

Effect van luchttemperatuur op rolgeluidcorrectie

De luchttemperatuur heeft invloed op de rolgeluidsemissie; het niveau van het rolgeluidsvermogen neemt af wanneer de luchttemperatuur toeneemt. Dit effect wordt in de wegdekcorrectie ingevoerd. Wegdekcorrecties worden gewoonlijk op een luchttemperatuur van τref = 20°C beoordeeld. Bij een verschillende jaarlijkse gemiddelde luchttemperatuur °C, wordt het wegdekgeluid gecorrigeerd door:

LW,temp,m,(τ) = Kmref– τ)

(2.2.6)

De correctieterm is positief (dat wil zeggen lawaai neemt toe) voor temperaturen lager dan 20°C en negatief (dat wil zeggen lawaai neemt af) voor hogere temperaturen. De coëfficiënt K is afhankelijk van het wegdek en de kenmerken van de band en vertoont in het algemeen enige afhankelijkheid van frequentie. Een algemene coëfficiënt Km=1 = 0,08 dB/°C voor lichte voertuigen (categorie 1) en Km=2 = Km=3 = 0,04 dB/°C voor zware voertuigen (categorieën 2 en 3) wordt voor alle wegdekken toegepast. De correctiecoëfficiënt wordt in dezelfde mate op alle octaafbanden van 63 tot en met 8.000 Hz toegepast.

2.2.4. Aandrijfgeluid

[Regeling vervallen per 01-01-2024]

Algemene vergelijking

De aandrijfgeluidsemissie omvat alle bijdragen van de motor, uitlaat, versnellingen, luchtinlaat enz. Het vermogensniveau van het aandrijfgeluid in de frequentieband i voor een voertuig van categorie m wordt gedefinieerd als:

Bijlage 267854.png

(2.2.7)

De coëfficiënten AP,i,m en BP,i,m worden voor elke voertuigcategorie in octaafbanden en voor een referentiesnelheid νref = 70 km/h opgegeven.

∆LWP,i,m stemt overeen met de som van de correctiecoëfficiënten die worden toegepast op de aandrijfgeluidsemissie voor specifieke rijomstandigheden of regionale omstandigheden die van de referentieomstandigheden afwijken:

∆LWP,i,m = ∆LWP,road,i,m + ∆LWP,grad,i,m + ∆LWP,acc,i,m

(2.2.8)

∆LWP,road,i,m verdisconteert het effect van het wegdek op het aandrijfgeluid via absorptie. De berekening wordt volgens hoofdstuk 2.2.6 verricht.

∆LWP,acc,i,m en LWP,grad,i,m veroorzaken het effect van weghellingen en van versnelling en vertraging van voertuigen op kruispunten. Zij worden in overeenstemming met respectievelijk hoofdstukken 2.2.4 en 2.2.5 berekend.

Effect van weghellingen

De weghelling heeft twee gevolgen voor de geluidsemissie van het voertuig. Ten eerste heeft zij invloed op de voertuigsnelheid en dus op de rol- en aandrijfgeluidsemissies van het voertuig. Ten tweede heeft zij invloed op zowel de motorbelasting als het motortoerental via de keuze van versnelling en dus op de aandrijfgeluidsemissie van het voertuig. Alleen het effect op het aandrijfgeluid wordt in deze sectie in aanmerking genomen, waarbij van een constante snelheid wordt uitgegaan.

Voor m=1

Bijlage 267855.png

(2.2.9)

Voor m=2

Bijlage 267856.png

(2.2.10)

Voor m=3

Bijlage 267857.png

(2.2.11)

Voor m=4

∆LWP,grad,i,m = 4 = 0

(2.2.12)

De correctie ∆LWP,grad,m houdt impliciet rekening met het effect van de helling op de snelheid.

2.2.5. Effect van de versnelling en vertraging van voertuigen

[Regeling vervallen per 01-01-2024]

Voor en na kruispunten met verkeerslichten en rotondes wordt een correctie toegepast voor het effect van versnelling en vertraging zoals hieronder beschreven.

De correctietermen voor rolgeluid, ∆LWR,acc,m,k, en voor aandrijfgeluid, ∆LWP,acc,m,k, zijn lineaire functies van de afstand x (in m) van de puntbron tot het dichtstbijzijnde snijpunt van de respectieve bronlijn met een andere bronlijn. De correctietermen worden in gelijke mate aan alle octaafbanden toegeschreven:

Bijlage 267858.png

(2.2.13)

Bijlage 267859.png

De coëfficiënten CR,m,k en CP,m,k hangen af van de aard van het kruispunt k (k = 1 voor een kruispunt met verkeerslichten, k = 2 voor een rotonde) en worden voor elke voertuigcategorie vermeld. De correctie omvat het effect van snelheidsverandering bij het naderen of wegrijden van een kruispunt of rotonde.

Opgemerkt wordt dat op een afstand | x | ≥ 100 m, ∆LWR,acc,m,k = ∆LWP,acc,m,k = 0.

2.2.6. Effect van het type wegdek

[Regeling vervallen per 01-01-2024]

Algemene beginselen

Voor een wegdek met akoestische eigenschappen die afwijken van de akoestische eigenschappen van het referentiewegdek, wordt een spectrale correctieterm voor zowel rolgeluid als aandrijfgeluid toegepast.

De wegdekcorrectieterm voor de rolgeluidsemissie wordt verkregen door:

Bijlage 267860.png

(2.2.15)

waarbij

αi,m de spectrale correctie in dB op referentiesnelheid νref voor categorie m (1, 2 of 3) en spectrale band i is,

βm het effect van de snelheid op de vermindering van het rolgeluid voor categorie m (1, 2 of 3) is, en voor alle frequenties gelijk is.

De wegdekcorrectieterm voor de aandrijfgeluidsemissie wordt verkregen door:

LWP,road,i,m = min (αi,m; 0)

(2.2.16)

Absorberende wegdekken verminderen het aandrijfgeluid, terwijl niet-absorberende oppervlakken het niet vergroten.

Leeftijdseffect op de eigenschappen van het wegdekgeluid

De geluidskenmerken van wegdekken variëren naar gelang de leeftijd en het onderhoudsniveau en worden na verloop van tijd luider. In deze methode worden die wegdekparameters afgeleid die representatief zijn voor de akoestische prestaties van het type wegdek, evenredig verdeeld over de representatieve levensduur en uitgaande van goed onderhoud.

2.2.7. Emissiekentallen wegverkeer

[Regeling vervallen per 01-01-2024]

Tabel 2.2.b Coëfficiënten AR,i,m en BR,i,m voor rolgeluid en AP,i,m en BP,i,m voor voortstuwingslawaai

Categorie

Coëfficient

63

125

250

500

1000

2000

4000

8000

1

AR

83,4

86,8

86,1

92,5

99,8

96,6

85,8

76,2

BR

39,2

37,5

32,2

18,4

24,9

25,8

32,1

35,1

AP

98,0

90,3

89,7

88,3

86,8

89,7

85,1

78,0

BP

2,8

6,1

5,6

5,4

5,1

3,5

5,3

6,3

2

AR

88,2

91,4

91,0

99,2

100,2

94,3

86,6

82,2

BR

27,7

23,7

16,6

18,3

28,8

32,6

31,0

28,2

AP

105,3

99,4

98,5

99,4

101,5

98,6

91,7

84,6

BP

–2,4

–0,6

–1,0

3,8

5,9

5,0

3,3

1,3

3

AR

90,4

93,2

94,4

104,6

105,3

98,4

89,3

83,8

BR

30,3

26,9

22,1

26,1

33,7

35,2

35,6

34,0

AP

107,8

102,2

102,2

104,9

104,6

100,1

93,5

86,7

BP

0,8

0,3

0,3

5,6

6,2

4,4

3,9

2,3

4a

AR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

BR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

AP

93,0

93,0

93,5

95,3

97,2

100,4

95,8

90,9

BP

4,2

7,4

9,8

11,6

15,7

18,9

20,3

20,6

4b

AR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

BR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

AP

99,9

101,9

96,7

94,4

95,2

94,7

92,1

88,6

BP

3,2

5,9

11,9

11,6

11,5

12,6

11,1

12,0

Tabel 2.2.c Coëfficiënten CR,m,k en CP,m,k voor versnelling en vertraging

Categorie

k

CR

CP

1

1=kruising

–4,5

5,5

2=rotonde

–4,4

3,1

2

1=kruising

–4,0

9,0

2=rotonde

–2,3

6,7

3

1=kruising

–4,0

9,0

2=rotonde

–2,3

6,7

4a/4b

1=kruising

0,0

0,0

2=rotonde

0,0

0,0

Tabel 2.2.d Wegdekcorrecties

Beschrijving

Minimumsnelheid [km/h]

Maximumsnelheid [km/h]

Categorie

αm

(63 Hz)

αm

(125 Hz)

αm

(250 Hz)

αm

(500 Hz)

αm

(1 kHz)

αm

(2 kHz)

αm

(4 kHz)

αm

(8 kHz)

βm

Referentie-wegdek

--

--

1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1-laags Zoab

50

130

1

0,0

5,4

4,3

4,2

–1,0

–3,2

–2,6

0,8

-6,5

2

7,9

4,3

5,3

–0,4

–5,2

–4,6

–3,0

–1,4

0,2

3

9,3

5,0

5,5

–0,4

–5,2

–4,6

–3,0

–1,4

0,2

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Akoestisch geoptimaliseerd 1L ZOAB

50

130

1

–0,7

0,5

1,4

3,7

-5,2

-6,3

–5,9

–4,7

–5,9

2

–1,2

–0,3

3,6

–0,9

–7,6

–6,0

–5,2

–4,9

–5,5

3

–1,2

–0,3

3,6

–0,9

–7,6

–6,0

–5,2

–4,9

–5,5

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2-laags Zoab

50

130

1

1,6

4,0

0,3

–3,0

–4,0

–6,2

–4,8

–2,0

–3,0

2

7,3

2,0

–0,3

–5,2

–6,1

–6,0

–4,4

–3,5

4,7

3

8,3

2,2

–0,4

–5,2

–6,2

–6,1

–4,5

–3,5

4,7

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2-laags Zoab (fijn)

80

130

1

–1,0

3,0

–1,5

–5,3

–6,3

–8,5

–5,3

–2,4

–0,1

2

7,9

0,1

–1,9

–5,9

–6,1

–6,8

–4,9

–3,8

–0,8

3

9,4

0,2

–1,9

–5,9

–6,1

–6,7

–4,8

–3,8

–0,9

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

SMA-NL5

40

80

1

10,3

–0,9

0,9

1,8

–1,8

–2,7

–2,0

–1,3

–1,6

2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

SMA-NL8

40

80

1

6,0

0,3

0,3

0,0

–0,6

–1,2

–0,7

–0,7

–1,4

2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Akoestisch geoptimaliseerd SMA

40

80

1

6,1

–0,9

–1,1

–0,1

–2,9

–3,2

–3,2

–3,0

–2,2

2

–3,0

–2,4

–1,6

–2,2

–3,0

–3,0

–3,0

–4,0

–2,3

3

–3,0

–2,4

–1,6

–2,2

–3,0

–3,0

–3,0

–4,0

–2,3

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Uitgeborsteld beton

70

120

1

8,2

–0,4

2,8

2,7

2,5

0,8

–0,3

–0,1

1,4

2

0,3

4,5

2,5

–0,2

–0,1

–0,5

–0,9

–0,8

5,0

3

0,2

5,3

2,5

–0,2

–0,1

–0,6

–1,0

–0,9

5,5

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Geoptimaliseerd uitgeborsteld beton

70

80

1

–0,2

–0,7

1,4

1,2

1,1

–1,6

–2,0

–1,8

1,0

2

–0,7

3,0

–2,0

–1,4

–1,8

–2,7

–2,0

–1,9

–6,6

3

–0,5

4,2

–1,9

–1,3

–1,7

–2,5

–1,8

–1,8

–6,6

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Fijn gebezemd beton

70

120

1

8,0

–0,7

4,8

2,2

1,2

2,6

1,5

–0,6

7,6

2

0,2

8,6

7,1

3,2

3,6

3,1

0,7

0,1

3,2

3

0,1

9,8

7,4

3,2

3,1

2,4

0,4

0,0

2,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Oppervlakte bewerking

50

130

1

8,3

2,3

5,1

4,8

4,1

0,1

–1,0

–0,8

–0,3

2

0,1

6,3

5,8

1,8

–0,6

–2,0

–1,8

–1,6

1,7

3

0,0

7,4

6,2

1,8

–0,7

–2,1

–1,9

–1,7

1,4

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Elementen- verharding in keper-verband

30

60

1

27,0

16,2

14,7

6,1

3,0

–1,0

1,2

4,5

2,5

2

29,5

20,0

17,6

8,0

6,2

–1,0

3,1

5,2

2,5

3

29,4

21,2

18,2

8,4

5,6

–1,0

3,0

5,8

2,5

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Elementen- verharding in dwars-verband

30

60

1

31,4

19,7

16,8

8,4

7,2

3,3

7,8

9,1

2,9

2

34,0

23,6

19,8

10,5

11,7

8,2

12,2

10,0

2,9

3

33,8

24,7

20,4

10,9

10,9

6,8

12,0

10,8

2,9

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Stille elementen- verharding

30

60

1

26,8

13,7

11,9

3,9

–1,8

–5,8

–2,7

0,2

–1,7

2

9,2

5,7

4,8

2,3

4,4

5,1

5,4

0,9

0,0

3

9,1

6,6

5,2

2,6

3,9

3,9

5,2

1,1

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Dunne deklagen A

40

130

1

10,4

0,7

–0,6

–1,2

–3,0

–4,8

–3,4

–1,4

–2,9

2

13,8

5,4

3,9

–0,4

–1,8

–2,1

–0,7

–0,2

0,5

3

14,1

6,1

4,1

–0,4

–1,8

–2,1

–0,7

–0,2

0,3

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Dunne deklagen B

40

130

1

6,8

–1,2

–1,2

–0,3

–4,9

–7,0

–4,8

–3,2

–1,8

2

13,8

5,4

3,9

–0,4

–1,8

–2,1

–0,7

–0,2

0,5

3

14,1

6,1

4,1

–0,4

–1,8

–2,1

–0,7

–0,2

0,3

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2.3. Spoorweglawaai

[Regeling vervallen per 01-01-2024]

2.3.1. Bronbeschijving

[Regeling vervallen per 01-01-2024]

Indeling van voertuigen

Definitie van voertuig en trein

Ten behoeve van deze berekeningsmethode voor geluidsbelasting wordt een voertuig gedefinieerd als een afzonderlijk deel van een trein (doorgaans een locomotief, zelf-aangedreven rijtuig, getrokken rijtuig of goederenwagon) dat onafhankelijk kan worden verplaatst en van de rest van de trein kan worden losgemaakt. Sommige specifieke omstandigheden kunnen optreden voor delen van een trein die deel uitmaken van een niet-afkoppelbare set, bijvoorbeeld die samen één draaistel delen. Ten behoeve van deze berekeningsmethode worden al deze delen in één voertuig samengebracht. Ten behoeve van deze berekeningsmethode bestaat een trein uit een reeks gekoppelde voertuigen.

Tabel 2.3.a1 definieert een gemeenschappelijke taal voor de beschrijving van de voertuigtypen die in de brondatabank zijn opgenomen. Zij geeft de relevante descriptoren die moeten worden gebruikt om de voertuigen in hun geheel te classificeren. Deze descriptoren stemmen overeen met de eigenschappen van het voertuig die invloed hebben op het akoestische richtingsafhankelijk geluidsvermogen per meter lengte van de equivalente gemodelleerde bronlijn.

Het aantal voertuigen per type wordt vastgesteld op elk van de baanvakken voor elk van de tijdsperioden die in de berekening van geluidsbelasting worden gebruikt. Het wordt uitgedrukt als een gemiddeld aantal voertuigen per uur, dat wordt verkregen door het totaal aantal voertuigen in een bepaalde periode te delen door de duur van deze periode in uren (bijvoorbeeld 24 voertuigen in vier uur betekent 6 voertuigen per uur). Alle voertuigtypen die op elk baanvak rijden, worden gebruikt.

Tabel 2.3.a1 Indeling en descriptoren voor spoorvoertuigen

Cijfer

1

2

3

4

Descriptor

Voertuigtype

Aantal assen per voertuig

Type rem

Wielmaatregel

Verklaring van de descriptor

Een letter die het type beschrijft

Het werkelijk aantal assen

Een letter die het type rem beschrijft

Een letter die het type lawaaiverminderingsmaatregel beschrijft

Mogelijke descriptoren

h

hogesnelheidsvoertuig (> 200 km/h)

1

c

gietijzeren blok

n

geen maatregel

m

zelf-aangedreven reizigersrijtuigen

2

k

blok van composietmetaal of sintermetaal

d

dempers

p

getrokken reizigersrijtuigen

3

n

niet op het loopvlak remmend, zoals schijf, trommel, magnetisch

s

schermen

c

stadstram of lichte metro zelf-aangedreven en niet-zelf-aangedreven rijtuig

4

 

o

overige

d

diesellocomotief

enz

   

e

elektrische locomotief

     

a

algemeen vrachtvoertuig

     

o

andere (dat wil zeggen onderhoudsvoertuigen enz.)

     

In Nederland worden als voertuigtypen de voertuigcategorieën toegepast uit bijlage IV, paragraaf 1.2.1, bij het Reken- en meetvoorschrift geluid 2012, waarbij de descriptoren horen zoals aangegeven in tabel 2.3.a2.

Tabel 2.3.a2 Descriptoren van voertuigcategorieën

Cat 1

m4cn

Cat 2

m4cn, p4cn, m4nn, p4nn

Cat 3

m4nn, p4nn, m4kn, p4kn

Cat 4

a4cn

Cat 5

d4cn

Cat 6

d4nn

Cat 7

c6nn

Cat 8

m3nn, p3nn

Cat 9

h3nn, h3kn, h3cn

Cat 10

c3nn

Cat 11

a4kn

Cat 12

m2nn, m3nn

Classificatie van railtypen

De bestaande railtypen kunnen verschillen, omdat verscheidene elementen bijdragen aan hun akoestische eigenschappen en deze karakteriseren. De railtypen die in deze methode worden gebruikt, staan vermeld in onderstaande tabel 2.3.b. Sommige elementen hebben een grote invloed op de akoestische eigenschappen, terwijl andere slechts een bijkomend effect hebben. In het algemeen zijn de meest relevante elementen die de emissie van het spoorweglawaai beïnvloeden: ruwheid van de railkop, stijfheid van de onderlegplaatjes, spoorbed, voegen en boogstraal. Als alternatief kunnen de algemene eigenschappen van het spoor worden gedefinieerd en in dit geval zijn de ruwheid van de railkop en de mate van afstandsdemping volgens ISO 3095 de meest essentiële akoestische parameters, plus de boogstraal.

Een baanvak wordt gedefinieerd als een deel van een enkel spoor, op een spoorlijn, station of depot, waarop de fysieke kenmerken en basiscomponenten van het spoor niet veranderen.

Tabel 2.3.b1 definieert een gemeenschappelijke taal voor de beschrijving van de railtypen die in de brondatabank zijn opgenomen.

Tabel 2.3.b1 Descriptoren voor railtypen

Cijfer

1

2

3

4

5

6

Descriptor

Spoorbed

Ruwheid van de railkop

Type onderleg-plaat

Aanvullende maatregelen

Voegen

Boogstraal

Verklaring van de descriptor

Type spoorbed

Indicator voor ruwheid

Geeft een indicatie van de

‘dynamische’ stijfheid weer

Een letter die de akoestische inrichting beschrijft

Aanwezigheid van voegen en onderlinge afstand

Geeft de boogstraal aan in m

Toegestane codes

B

Ballast

E

Goed onderhouden en zeer glad

S

Zacht (150-250

MN/m)

N

Geen

N

Geen

N

Recht spoor

S

Betonplaten spoor

M

Normaal onderhouden

M

Gemiddeld

(250 tot 800 MN/m)

D

Raildemper

S

Enkele voeg of wissel

L

Laag

(1.000-500 m)

L

Brug volgestort met ballast

N

Niet goed onderhouden

H

Stijf

(800-1.000

MN/m)

B

Minischerm

D

Twee voegen of wissels per 100 m

M

Gemiddeld

(minder dan 500 m en meer dan 300 m)

N

Brug zonder ballast

B

Niet onderhouden en slechte conditie

 

A

Absorberende plaat op betonplaten- spoor

M

Meer dan twee voegen of wissels per 100 m

H

Hoog

(minder dan 300 m)

T

Ingegoten spoor

   

E

Ingegoten spoorstaaf

   

O

Overige

   

O

Overige

   

In Nederland worden als railtypen de bovenbouwconstructies toegepast uit bijlage IV, paragraaf 3.2, bij het Reken- en meetvoorschrift geluid 2012, waarbij de descriptoren horen zoals aangegeven in tabel 2.3.b2:

Tabel 2.3.b2 Meest voorkomende descriptorcombinaties per bovenbouwtypen voor doorgaand spoor

bb=1

BMHNNN

bb=2

BMHNNN

bb=3

BMHNSN, BMHNDN

bb=4

SMHNNN

bb=5

BMHNNN

bb=6

SMMNNN/NMMNNN

bb=7

BMMNNN

bb=8

TM_ENN

bb=9

SMHNNN

bb=10

BMHDNN

bb=11

OMHNNN

bb=12

OMHDNN

Tabel 2.3.b2 Meest voorkomende descriptorcombinaties per bovenbouwtypen voor wisseldelen

bb=1

BMHNDL

bb=2

BMHNDL

bb=3

BMHNDL

bb=9

SMHNDL

bb=11

OMHNDL

Aantal en plaats van de equivalente geluidsbronnen

Bijlage 267861.png
Figuur 2.3.a, Plaats van equivalente geluidsbronnen

De verschillende equivalente geluidsbronlijnen worden op verschillende hoogten en in het midden van het spoor geplaatst. Alle hoogten worden gerekend vanaf de raaklijn van de twee bovenste oppervlakken van de twee spoorstaven.

De equivalente bronnen omvatten verschillende fysieke bronnen (index p). Deze fysieke bronnen zijn onderverdeeld in verschillende categorieën, afhankelijk van het generatiemechanisme, en omvatten: 1) rolgeluid (waaronder niet alleen trillingen van rails en spoorbedding en wielen, maar ook, waar aanwezig, geluid van de wagenbovenbouw van de vrachtvoertuigen), 2) tractiegeluid, 3) aerodynamisch geluid, 4) stootgeluid (van overgangen, wissels en knooppunten), 5) booggeluid en 6) geluid door extra effecten zoals bruggen en viaducten.

  • 1. De wiel- en railkopruwheid genereren langs drie transmissiepaden naar de afstralende oppervlakken (spoorstaven, wielen en bovenbouw), het rolgeluid. Dit wordt toegewezen aan h = 0,5 m (afstralende oppervlakken A) om de bijdrage van het spoor weer te geven, waaronder de invloed van het oppervlak van de spoorstaven, vooral betonplatenspoor (in overeenstemming met het voortplantende deel), om de bijdrage van de wielen weer te geven, en om de bijdrage van de wagenbovenbouw van het voertuig aan het geluid weer te geven (in goederentreinen).

  • 2. De equivalente bronhoogten voor tractiegeluid variëren tussen 0,5 m (bron A) en 4,0 m (bron B), afhankelijk van de fysieke plaatsing van de component in kwestie. Bronnen zoals tandwieloverbrengingen en elektromotoren bevinden zich vaak op een ashoogte van 0,5 m (bron A). Louvres en koeleruitlaten kunnen zich op verschillende hoogten bevinden. Motoruitlaten voor dieselvoertuigen bevinden zich vaak op een dakhoogte van 4,0 m (bron B). Andere tractiebronnen zoals ventilatoren of dieselmotorblokken kunnen zich op een hoogte van 0,5 m (bron A) of 4,0 m (bron B) bevinden. Als de exacte bronhoogte zich tussen de modelhoogten bevindt, wordt de geluidsenergie proportioneel over de dichtstbijzijnde aangrenzende bronhoogten verdeeld. Om deze reden voorziet de methode twee bronhoogten op 0,5 m (bron A) en 4,0 m (bron B) en wordt het equivalente geluidsvermogen van beide tussen de twee verdeeld, afhankelijk van de specifieke configuratie van de bronnen op het type eenheid.

  • 3. Aerodynamische geluidseffecten houden verband met de bron op 0,5 m (mantels en schermen, bron A) en de bron op 4,0 m (alle inrichtingen op het dak en de stroomafnemer, bron B). De keuze van 4,0 m voor de effecten van de stroomafnemer staat bekend als een eenvoudig model, en moet zorgvuldig worden overwogen als het doel de keuze van een correcte hoogte voor geluidsschermen is.

  • 4. Stootgeluid houdt verband met de bron op 0,5 m (bron A).

  • 5. Booggeluid houdt verband met de bronnen op 0,5 m (bron A).

  • 6. Bruggeluid houdt verband met de bron op 0,5 m (bron A).

2.3.2. Geluidsvermogensemissie

[Regeling vervallen per 01-01-2024]

Algemene vergelijking

Individueel voertuig

Het model voor spoorweglawaai, dat analoog is aan wegverkeerslawaai, beschrijft de geluidsvermogensemissie van een specifieke combinatie van voertuigtype en spoortype die aan een aantal eisen voldoet die in de voertuig- en spoorclassificatie zijn beschreven, uitgedrukt in een reeks geluidsvermogens voor elk voertuig (LW,0).

Verkeersstroom

De geluidsemissie van een verkeersstroom op elk spoor wordt weergegeven met een set van twee bronlijnen die zijn gekenmerkt door hun gerichte geluidsvermogen per meter per frequentieband. Dit komt overeen met de som van de geluidsemissies als gevolg van de afzonderlijke voertuigen die in de verkeersstroom passeren en houdt, in het specifieke geval van stilstaande voertuigen, rekening met de tijd die de voertuigen in het baanvak in kwestie verblijven.

Het richtingsafhankelijke geluidsvermogen per meter per frequentieband, als gevolg van alle voertuigen die elk baanvak op het spoortype (j) passeren, wordt gedefinieerd:

  • voor elke frequentieband (i)

  • voor elk gegeven bronhoogte (h) (voor bronnen op 0,5 m h = 1, op 4,0 m h = 2), en is de energiesom van alle bijdragen van alle voertuigen die op het specifieke baanvak (j) rijden.

Deze bijdragen zijn:

  • van alle voertuigentypen (t)

  • op verschillende snelheden (s)

  • onder de specifieke rijcondities (constante snelheid) (c)

  • voor elk fysiek brontype (rollen, contact, booggeluid, tractie, aerodynamische en overige bronnen, zoals bruggeluid) (p).

Voor de berekening van het gerichte geluidsvermogen per meter (invoer in het voortplantende deel) als gevolg van de gemiddelde mix van verkeer op het baanvak (j), wordt het volgende gebruikt:

Bijlage 267862.png

(2.3.1)

waarbij

  • Tref de referentieperiode waarvoor het gemiddelde verkeer wordt beschouwd is;

  • x het totaal aantal bestaande combinaties van i, t, s, c, p voor elk j-de baanvak is;

  • t de index voor voertuigtypen op het j-de baanvak is;

  • s de index voor de treinsnelheid is: er zijn net zo veel indexen als het aantal verschillende gemiddelde treinsnelheden op het j-de baanvak;

  • c de index voor rijcondities is: 1 (voor constante snelheid), 2 (stationair draaien);

  • p de index voor de fysieke brontypen is: 1 (voor rol- en stootgeluid), 2 (booggeluid), 3 (tractiegeluid), 4 (aerodynamisch geluid), 5 (overige bronnen);

  • Lw’,eq,lijn,x x-de richtingsafhankelijke geluidsvermogen is per meter voor een bronlijn van één combinatie van t, s, c, p op elk j-de baanvak.

Als wordt uitgegaan van een constante stroom van Q voertuigen per uur, met een gemiddelde snelheid ν, dan is er gemiddeld op elk tijdstip een equivalent aantal Q/ν voertuigen per lengte-eenheid van het baanvak. De geluidsemissie van de voertuigstroom uitgedrukt in richtingsafhankelijke geluidsvermogen per meter Lw’,eq,lijn uitgedrukt in dB/m (re. 10-12 W) wordt geïntegreerd door:

Bijlage 267863.png

(2.3.2)

waarbij

  • Q het gemiddelde aantal voertuigen per uur op het j-de baanvak voor voertuigtype t, gemiddelde treinsnelheid s en rijconditie c is,

  • ν hun snelheid [km/h] op het j-de baanvak voor voertuigtype t en gemiddelde treinsnelheid s is,

  • LW,0,dir het niveau van het richtingsafhankelijke geluidsvermogen is van het specifieke geluid (rol-, stoot-, boog-, rem-, tractie-, aerodynamisch geluid en geluid van andere bronnen) van een enkel voertuig in de richtingen Ψ,φ gedefinieerd met betrekking tot de bewegingsrichting van het voertuig (zie figuur 2.3.b).

Bij een stationaire bron, net als tijdens stationair draaien, wordt ervan uitgegaan dat het voertuig gedurende een totale tijd Tidle op een locatie binnen een baanvak met lengte L blijft. Dat betekent dat met Tref als de referentieperiode voor de beoordeling van geluidsbelasting (bijvoorbeeld 12 uur, 4 uur, 8 uur), het richtingsafhankelijk geluidsvermogen per lengte eenheid op dat baanvak wordt bepaald door:

Bijlage 267864.png

(2.3.3)

In het algemeen wordt gericht geluidsvermogen uit elke specifieke bron verkregen als:

LW,0,dir,i(Ψ, φ) = LW,0+ ∆LW,dir,vert,i + ∆LW,dir,hor,i

(2.3.4)

waarbij

  • ∆LW,dir,vert,i de correctiefunctie is voor verticaal richteffect (dimensieloos) van Ψ (figuur 2.3.b)

  • ∆LW,dir,hor,i de correctiefunctie is voor horizontaal richteffect (dimensieloos) van φ (figuur 2.3.b)

  • LW,0,dir,i(Ψ,φ), afgeleid in 1/3-octaafbanden, wordt uitgedrukt in octaafbanden door elke bijbehorende 1/3-octaafband energetisch in de overeenkomstige octaafband toe te voegen.

    Bijlage 267865.png
    Figuur 2.3.b, Geometrische definitie

Ten behoeve van de berekeningen wordt de bronsterkte vervolgens specifiek uitgedrukt in richtingsafhankelijk geluidsvermogen per 1 m spoorlengte LW’,tot,dir,i om het richteffect van de bronnen in hun verticale en horizontale richting in aanmerking te nemen door middel van aanvullende correcties.

Verscheidene LW,0,dir,i (Ψ,φ) worden voor elke combinatie van voertuig-spoor-snelheid-rijconditie beschouwd:

  • voor een 1/3-octaafbandfrequentie (i),

  • voor elk baanvak (j),

  • bronhoogte (h) (voor bronnen op 0,5 m h = 1, op 4,0 m h = 2),

  • richteffect (d) van de bron.

Een reeks LW,0,dir,i (Ψ,φ) wordt beschouwd voor elke combinatie van voertuig-spoor-snelheid-rijconditie, elk baanvak, de hoogten die met h = 1 en h = 2 overeenstemmen, en het richteffect.

Rolgeluid

De bijdragen van het voertuig en het spoor aan rolgeluid worden in vier essentiële elementen verdeeld: wielruwheid, railruwheid, voertuigoverdrachtsfunctie naar de wielen en de wagenbovenbouw (voertuigen) en de spooroverdrachtsfunctie. Wiel- en railruwheid geven de oorzaak van de excitatie van de trilling op het contactpunt tussen rail en wiel weer. De overdrachtsfuncties zijn twee empirische of gemodelleerde functies die alle complexe verschijnselen van de generatie van mechanische trilling en geluid op de oppervlakken van de wielen, rails, dwarsliggers en onderbouw van het spoor weergeven. Deze verdeling stemt overeen met het fysieke bewijs dat ruwheid op een rail de trilling van de rail kan exciteren, maar ook de trilling van het wiel zal exciteren en omgekeerd. Het niet opnemen van een van deze vier parameters zou het ontkoppelen van de classificatie van sporen en treinen verhinderen.

Wiel en railruwheid

Rolgeluid wordt voornamelijk door de rail- en wielruwheid in het golflengtegebied van 5-500 mm geëxciteerd.

Definitie

Het ruwheidsniveau Lr wordt gedefinieerd als tienmaal de logaritme met grondgetal 10 van de kwadratisch gemiddelde waarde r2 van de ruwheid van het loopvlak van een rail of wiel in de bewegingsrichting (longitudinaal niveau), gemeten in μm over een bepaalde raillengte of de gehele wieldiameter, gedeeld door het kwadraat van de referentiewaarde r02:

Bijlage 267866.png

(2.3.5)

waarbij

r0 = 1 μm

r = kwadratisch gemiddelde van het verschil van de verticale verplaatsing van het contactoppervlak naar het gemiddelde niveau.

Het ruwheidsniveau Lr wordt gewoonlijk verkregen als een spectrum van golflengte λ en wordt geconverteerd naar een frequentiespectrum f = ν/λ, waarbij f de middenfrequentie van een bepaalde 1/3-octaafband in Hz, λ de golflengte in m, en ν de treinsnelheid in m/s is. Het ruwheidsspectrum als een functie van frequentie verschuift langs de frequentie-as voor verschillende snelheden. In algemene gevallen dienen na conversie naar het frequentiespectrum door middel van de snelheid, nieuwe waarden voor 1/3-octaafbandspectra te worden verkregen met gemiddelden die tussen twee overeenstemmende 1/3-octaafbanden in het golflengtedomein liggen. Om het frequentiespectrum van de totale effectieve ruwheid te schatten dat met de relevante treinsnelheid overeenkomt, wordt het gemiddelde van de twee overeenkomstige, in het golflengtedomein gedefinieerde, 1/3-octaafbanden energetisch en proportioneel berekend.

De railruwheid (ruwheid van de kant van het spoor) voor het golfgetal (i) wordt gedefinieerd als Lr,TR,i

Overeenkomstig wordt de wielruwheid (ruwheid van de kant van het voertuig) voor het golfgetal (i) gedefinieerd als Lr,VEH,i

De totale en effectieve ruwheid voor golfgetal i(LR,TOT,i) wordt gedefinieerd als de energetische som van de ruwheid van de rail en die van het wiel, vermeerderd met het A3(λ) contactfilter om de filterende werking van de contactplaats tussen de spoorstaaf en het wiel in aanmerking te nemen, en is in dB:

Bijlage 267867.png

(2.3.6)

waar het wordt uitgedrukt als een functie van het i-de golfgetal dat overeenkomt met de golflengte λ. Het contactfilter is afhankelijk van het rail- en wieltype en de belasting.

De totale effectieve ruwheid voor het j-de baanvak en elk t-de voertuigtype op de overeenkomstige snelheid ν, wordt in de methode gebruikt.

Overdrachtsfunctie van voertuig, spoor en wagenbovenbouw

Drie snelheidsonafhankelijke overdrachtsfuncties, LH,TR,i,LH,VEH,i en LH,VEH,SUP,i, worden gedefinieerd: de eerste voor elk j-de baanvak en de twee volgende voor elk t-de voertuigtype. Zij relateren de totale effectieve ruwheid aan het geluidsvermogen van respectievelijk het spoor, de wielen en de wagenbovenbouw.

De bijdrage van de wagenbovenbouw wordt alleen voor goederenwagons in aanmerking genomen, dus alleen voor voertuigtype ‘a’.

Daardoor worden voor rolgeluid de bijdragen van het spoor en van het voertuig volledig beschreven door deze overdrachtsfuncties en de totale effectieve ruwheid. Bij stationair draaien van een trein wordt rolgeluid uitgesloten.

Voor geluidsvermogen per voertuig wordt het rolgeluid op ashoogte berekend, en heeft dit als invoer de totale effectieve ruwheid LR,TOT,i als functie van de voertuigsnelheid ν, de overdrachtsfuncties van het spoor, het voertuig en de wagenbovenbouw LH,TR,i,LH,VEH,i en LH,VEH,SUP,i, en het totale aantal assen Na:

voor h =1:

LW,0,TR,i= LR,TOT,i + LH,TR,i+ 10lg(Na)

(2.3.7)

LW,0,VEH,i= LR,TOT,i + LH,VEH,i+ 10lg(Na)

(2.3.8)

LW,0,VEHSUP,i= LR,TOT,i+ LH,VEHSUP,i+ 10lg(Na)

(2.3.9)

waarbij Na het aantal assen per voertuig voor het t-de voertuigtype is.

Bijlage 267868.png
Figuur 2.3.c, Regeling van het gebruik van de verschillende definities van ruwheid en overdrachtsfunctie

Een minimumsnelheid van 50 km/h (30 km/h alleen voor trams en lichte metro) wordt gebruikt om de totale effectieve ruwheid en dus het geluidsvermogen van de voertuigen te bepalen (deze snelheid heeft geen invloed op de berekening van de voertuigstroom) ter compensatie van de potentiële fout als gevolg van de vereenvoudiging van de definitie van rolgeluid, van remgeluid en van stootgeluid van overgangen en wissels.

Stootgeluid (overgangen, wissels en knooppunten)

Stootgeluid kan worden veroorzaakt door overgangen, wissels en voegen of puntstukken. Het kan variëren in grootte en kan rolgeluid overheersen. Stootgeluid wordt voor sporen met uitzetvoegen in aanmerking genomen. Voor stootgeluid door wissels, overgangen en voegen in baanvakken op een snelheid van minder dan 50 km/h (30 km/h voor trams en lichte metro) wordt modellering vermeden, omdat de minimumsnelheid van 50 km/h (30 km/h voor trams en lichte metro) wordt gebruikt om meer effecten op te nemen in overeenstemming met de beschrijving van het hoofdstuk over rolgeluid. Daarnaast wordt modellering van stootgeluid ook onder rijconditie c = 2 (stationair draaien) vermeden.

Stootgeluid wordt in de term rolgeluid opgenomen door een aanvullende fictieve contactruwheid (energetisch) toe te voegen aan de totale effectieve ruwheid op elk specifiek j-de baanvak waar dit aanwezig is. In dit geval wordt een nieuw LR,TOT+IMPACT,i in plaats van LR,TOT,i gebruikt en wordt dan:

Bijlage 267869.png

(2.3.10)

LR,IMPACT,i is een 1/3-octaafbandspectrum (als een functie van frequentie). Om dit frequentiespectrum te verkrijgen, wordt een spectrum als een functie van golflengte λ gegeven en naar het gewenste spectrum als een functie van frequentie geconverteerd met behulp van de verhouding λ = ν/f, waarbij f de middenfrequentie van de 1/3-octaafband in Hz en ν de s-de voertuigsnelheid van het t-de voertuigtype in m/s is.

Stootgeluid hangt af van het aantal en de hardheid van de contacten per lengte-eenheid of voegdichtheid, dus in het geval waar meerdere contacten worden gegeven, wordt de impactruwheid die in de bovenstaande vergelijking wordt gebruikt als volgt berekend:

Bijlage 267870.png

(2.3.11)

waarbij LR,IMPACT-SINGLE,ide contactruwheid zoals gegeven voor een enkel contact is en nl de lasdichtheid is.

Het standaardniveau van contactruwheid wordt voor een voegdichtheid nl = 0,01 m-1 gegeven, ofwel één voeg per elke 100 m spoor. Situaties met verschillende aantallen voegen worden benaderd door de dichtheid van het aantal lassen nlaan te passen. Opgemerkt wordt dat bij de modellering van de spoorligging en segmentatie, de dichtheid van het aantal voegen in aanmerking wordt genomen, dat wil zeggen het kan nodig zijn om een afzonderlijk bronsegment voor een stuk spoor met meer voegen te gebruiken. De LW,0 van de bijdragen van het spoor, wiel/draaistel en de wagenbovenbouw wordt door middel van de LR,IMPACT,i voor +/- 50 m vóór en na de spoorstaaflas verhoogd. Bij een reeks voegen wordt de verhoging uitgebreid naar tussen – 50 m vóór de eerste voeg en + 50 m na de laatste voeg.

De toepasbaarheid van deze geluidsvermogensspectra wordt normaliter ter plaatse gecontroleerd. Voor gelaste sporen wordt een standaard nl van 0,01 gebruikt.

Booggeluid

Booggeluid is een bijzondere bron die alleen relevant is voor bogen en is daarom een lokaal effect. Booggeluid hangt in het algemeen af van boogkromming, wrijvingscondities, treinsnelheid, rail-wielgeometrie en -dynamiek. Omdat het aanzienlijk kan zijn, is een passende beschrijving vereist. Op locaties waar booggeluid optreedt, meestal in bogen en wisselbogen (in afbuigende richting bereden), moeten geschikte spectra voor overtollig geluidsvermogen worden toegevoegd aan het bronvermogen. De geluidtoeslag kan specifiek zijn voor elk type rollend materieel, aangezien bepaalde wiel- en draaisteltypen aanzienlijk minder gevoelig zijn voor booggeluid dan andere. Als er metingen van de geluidtoeslag beschikbaar zijn die voldoende rekening houden met het stochastische karakter van het booggeluid, kunnen deze worden gebruikt.

Als er geen geschikte metingen beschikbaar zijn, kan een eenvoudige benadering worden gevolgd. Bij deze benadering wordt het booggeluid in aanmerking genomen door de volgende toeslagen aan de geluidsvermogensspectra van rolgeluid voor alle frequenties toe te voegen.

Trein

5 dB voor bogen met 300 m < R ≤ 500 m en ltrack ≥ 50 m

8 dB voor bogen met R ≤ 300 m en ltrack ≥ 50 m

8 dB voor wisselbogen met R ≤ 300 m

0 dB anders

Tram

5 dB voor bogen en wisselbogen met R ≤ 200 m

0dB anders

waarbij ltrack de lengte van het spoor langs de boog is en R de straal van de boog.

De toepasbaarheid van deze geluidsvermogensspectra of overtollige waarden wordt normaal gesproken ter plaatse gecontroleerd, met name voor trams en voor locaties waar bogen of wisselbogen worden behandeld met maatregelen tegen booggeluid.

Tractiegeluid

Hoewel tractiegeluid in het algemeen eigen is aan elke kenmerkende bedrijfsconditie, waaronder constante snelheid, vertragen, versnellen en stationair draaien, zijn de enige twee gemodelleerde condities constante snelheid (dat geldt ook wanneer de trein vertraagt of versnelt) en stationair draaien. De gemodelleerde bronsterkte komt alleen overeen met maximale belasting en dit leidt tot de hoeveelheden LW,0,const,i= LW,0,idling,i. Bovendien stemt LW,0,idling,i overeen met de bijdrage van alle fysieke bronnen van een bepaald voertuig die toe te schrijven is aan een bepaalde hoogte, zoals beschreven in 2.3.1.

LW,0,idling,i wordt uitgedrukt als een statische geluidsbron bij stationair draaien voor de duur van de stationaire toestand, en wordt gebruikt als een model van een vaste puntbron zoals beschreven in het volgende hoofdstuk over industrielawaai. Dit wordt alleen in aanmerking genomen indien treinen langer dan 0,5 uur stationair draaien.

Deze hoeveelheden kunnen van metingen van alle bronnen bij elke bedrijfsconditie worden verkregen, of de gedeeltelijke bronnen kunnen afzonderlijk worden aangemerkt om hun parameterafhankelijkheid en de relatieve sterkte te bepalen. Dit kan door middel van metingen op een stationair voertuig worden gedaan door assnelheden van de tractie-uitrusting te variëren, in navolging van ISO 3095:2005. Voor zover relevant moeten meerdere tractiegeluidsbronnen worden gekenmerkt die mogelijk niet alle van de treinsnelheid afhankelijk zijn:

  • geluid van de aandrijflijn, zoals dieselmotoren (waaronder inlaat, uitlaat en motorblok), tandwieltransmissie, elektrische generatoren, grotendeels afhankelijk van het toerental van de motor (omw./min.), en elektrische bronnen zoals omvormers, die voornamelijk van de lading afhankelijk kunnen zijn;

  • geluid van ventilatoren en koelsystemen, afhankelijk van het toerental van de ventilator. In sommige gevallen kunnen ventilatoren rechtstreeks aan de aandrijflijn worden gekoppeld;

  • periodieke bronnen zoals compressoren, kleppen en andere met een karakteristieke bedrijfsduur en overeenkomstige bedrijfscycluscorrectie voor de geluidsemissie.

Omdat elk van deze bronnen zich bij elke bedrijfsconditie anders kan gedragen, wordt het tractiegeluid dienovereenkomstig gespecificeerd. De bronsterkte wordt verkregen van metingen onder gecontroleerde omstandigheden. In het algemeen vertonen locomotieven meer variatie in belasting, omdat het aantal voertuigen dat wordt getrokken, en daardoor het uitgangsvermogen, aanzienlijk kan variëren, terwijl de vaste treinsamenstellingen zoals met elektrische motoren aangedreven meervoudige eenheden (EMU's), dieseltreinstellen (DMU's) en hogesnelheidstreinen een beter gedefinieerde belasting hebben.

Er is geen a priori toewijzing van het brongeluidsvermogen aan de bronhoogte, en deze keuze hangt af van de beoordeling van het specifieke geluid en specifieke voertuig. Het wordt gemodelleerd om zich op bron A (h = 1) en bron B (h = 2) te bevinden.

Aerodynamisch geluid

Aerodynamisch geluid is alleen relevant op hoge snelheden van meer dan 200 km/h. Daarom moet eerst worden nagegaan of het voor de toepassingsdoeleinden werkelijk noodzakelijk is. Als de functies rolgeluid, ruwheid en overdracht bekend zijn, kan het naar hogere snelheden worden geëxtrapoleerd en kan een vergelijking worden gemaakt met bestaande gegevens van hogesnelheidslijnen om na te gaan of aerodynamisch geluid hogere niveaus oplevert. Als de treinsnelheden op een netwerk hoger dan 200 km/h maar niet meer dan 250 km/h zijn, is het in sommige gevallen niet nodig om aerodynamisch geluid ook op te nemen, afhankelijk van het voertuigontwerp.

De bijdrage van aerodynamisch geluid wordt gegeven als een functie van snelheid:

Bijlage 267871.png

voor h = 1

(2.3.12)

Bijlage 267872.png

voor h = 2

(2.3.13)

waarbij

ν0 een snelheid is waarop aerodynamisch geluid dominant is en op 300 km/h is vastgesteld,

LW,0,1,i een referentiegeluidsvermogen is dat wordt bepaald op basis van twee of meer meetpunten voor bronnen op een bekende bronhoogte, bijvoorbeeld op het eerste draaistel,

LW,0,2,i een referentiegeluidsvermogen is dat wordt bepaald op basis van twee of meer meetpunten voor bronnen op een bekende bronhoogte, bijvoorbeeld de hoogte van de uitsparing van de stroomafnemer,

α1,i een coëfficiënt is die wordt bepaald op basis van twee of meer meetpunten voor bronnen op een bekende bronhoogte, bijvoorbeeld op het eerste draaistel,

α2,i een coëfficiënt is die wordt bepaald op basis van twee of meer meetpunten voor bronnen op een bekende bronhoogte, bijvoorbeeld de hoogte van de uitsparing van de stroomafnemer.

Richteffect van de bron

Het horizontale richteffect ∆LW,dir,hor,i in dB wordt in het horizontale vlak gegeven en kan als standaard worden aangenomen een dipool te zijn voor rolgeluid, stootgeluid (voegen enz.), booggeluid, remmen, ventilatoren en aerodynamische effecten, en wordt voor elke i-de frequentieband als volgt berekend:

∆LW,dir,hor,i= 10lg (0,01 + 0,99 * sin2φ)

(2.3.14)

Bruggeluid wordt gemodelleerd bij bron A (h=1), waarbij wordt uitgegaan van omni-directionaliteit.

Het verticale richteffect ∆LW,dir,ver,i in dB wordt in het verticale vlak gegeven voor bron A (h=1), als een functie van de middenfrequentie fc,i van elke i-de frequentieband, en:

voor 0 < ψ < π/2 is

Bijlage 267873.png

(2.3.15)

voor – π/2 < ψ < 0 is

ΔLW,dir,ver,i= 0

Voor bron (h = 2) voor het aerodynamisch effect:

ΔLW,dir,ver,i= 10lg (cos2 (ψ)) voor ψ<0

LW,dir,ver,i = 0 elders

(2.3.16)

Richteffect ∆LW,dir,ver,i wordt niet in aanmerking genomen voor bron B (h = 2) voor overige geluidbronnen, omdat voor deze bronnen in deze positie omnidirectionaliteit wordt aangenomen.

2.3.3. Aanvullende effecten

[Regeling vervallen per 01-01-2024]

Correctie voor geluid van kunstwerken (bruggen en viaducten)

In het geval dat het baanvak zich op een brug bevindt, is het noodzakelijk om het extra geluid dat wordt geproduceerd door de trilling van de brug als gevolg van de excitatie die door de aanwezigheid van de trein wordt veroorzaakt, in aanmerking te nemen. Het bruggeluid is gemodelleerd als een extra bron waarvan het geluidsvermogen per voertuig wordt verkregen door

ΔLW,0,bridge,i = LR,TOT,i+ LH,bridge,i +10lg (Na)

(2.3.17)

waarbij LH,bridge,i de brugoverdrachtsfunctie is. Het bruggeluid ∆LW,0,bridge,i vertegenwoordigt alleen het geluid dat door de structuur van de brug wordt uitgestraald. Het rolgeluid van een voertuig op de brug wordt berekend met behulp van de formules 2.3.8 tot en met 2.3.10, door de spooroverdrachtsfunctie te kiezen die overeenkomt met het spoorsysteem dat op de brug aanwezig is. Er wordt over het algemeen geen rekening gehouden met geluidschermen of obstakels aan de randen van de brug.

Correctie voor andere spoorgerelateerde geluidsbronnen

Diverse bronnen zoals opslagplaatsen, laad- en losplaatsen, stations, bellen, stationsluidsprekers enz., kunnen aanwezig zijn en houden verband met het spoorgeluid. Deze bronnen worden als bronnen van industrielawaai (vaste geluidsbronnen) behandeld en, indien van toepassing, overeenkomstig het volgende hoofdstuk over industrielawaai gemodelleerd.

2.3.4. Emissies

[Regeling vervallen per 01-01-2024]

Tabel 2.3.c Terminologie

Parameter

Parameters

Spooroverdrachtsfunctie

LH,TR

Voertuigoverdrachtsfunctie

LH,VEH

Wagenopbouw-overdrachtsfunctie

LH,VEH,SUP

Brugoverdrachtsfunctie

LH,bridge

Tractiegeluid

LW,0,idling

Aerodynamisch geluid

α1, LW,0,1, α2, LW,0,2

Railruwheid

Lr,TR

Wielruwheid

Lr,VEH

Stootgeluid (voegruwheid)

LR,IMPACT

Contactfilter

A3

Tabel 2.3.d Spooroverdrachtsfuncties LH,TR voor hoofd- en metrospoorwegen

Frequentie [Hz]

bb=1 ‘mono | medium’

bb=2

bb=3

bb=4

bb=5

bb=6

bb=7

bb=8

bb=9

bb=10

bb=11

bb=12

50

50,9

69,6

Neem ‘mono |Medium’ en pas ‘Impact Noise’ toe. Zie tabel 2.3.e voor de nl waarde en zie tabel 2.3.h voor de voegruwheid ‘NL’.

80,2

80,2

75,4

80,2

78,8

81,5

50,9

50,9

50,9

63

57,8

71,7

82,1

82,1

77,4

82,1

80,7

83,4

57,8

57,8

57,8

80

66,5

75,9

86,0

86,0

81,4

86,0

84,7

87,3

66,5

66,5

66,5

100

76,8

81,0

92,2

92,2

87,1

81,0

87,1

83,5

76,8

76,8

76,8

125

80,9

83,2

92,8

92,8

88,0

83,2

88,0

85,1

80,9

80,9

80,9

160

83,3

85,3

94,4

94,4

89,7

85,3

89,7

87,0

83,3

83,3

83,3

200

85,8

87,6

95,4

96,5

83,4

85,8

90,6

87,6

83,4

85,8

83,8

250

90,0

91,8

99,6

100,7

87,7

90,0

94,8

91,8

87,7

90,0

88,0

315

91,6

93,2

100,4

101,5

89,8

91,6

95,8

93,2

89,8

91,6

89,6

400

93,9

99,8

105,0

104,0

97,5

93,9

100,8

98,7

90,0

100,9

97,9

500

95,6

101,2

106,3

105,3

99,0

95,6

102,2

100,1

91,0

102,6

99,6

630

97,4

103,0

108,1

107,1

100,8

97,4

104,0

101,9

92,0

104,4

101,4

800

101,7

103,9

110,1

103,9

104,9

101,7

103,9

109,1

94,0

108,7

106,7

1.000

104,4

106,6

112,8

106,6

111,8

104,4

106,6

111,8

96,0

111,4

109,4

1.250

106,0

108,4

114,9

108,4

113,9

106,0

108,4

113,9

97,0

113,0

111,0

1.600

106,8

108,3

113,3

108,3

115,5

106,8

108,3

117,6

97,0

109,8

101,8

2.000

108,3

110,4

116,1

110,4

114,9

108,3

110,4

120,7

98,0

111,3

103,3

2.500

108,9

112,5

119,6

112,5

118,2

108,9

112,5

124,4

98,0

111,9

103,9

3.150

109,1

112,7

118,3

112,7

118,3

109,1

109,1

119,7

97,0

111,1

106,1

4.000

109,4

112,8

118,4

112,8

118,4

109,4

109,4

119,8

96,0

111,4

106,4

5.000

109,9

113,3

118,9

113,3

118,9

109,9

109,9

120,3

95,0

111,9

106,9

6.300

109,9

113,4

109,9

113,4

117,5

109,9

109,9

113,4

94,7

109,9

105,9

8.000

110,3

113,8

110,3

113,8

117,9

110,3

110,3

113,8

95,1

110,3

106,3

10.000

111,0

114,5

111,0

114,5

118,6

111,0

111,0

114,5

95,8

111,0

107,0

Tabel 2.3.e Stootgeluid vanwege voegen

Bb

m

Spoor

LR,IMPACT

nl

<>3

1

Voegloos

Leeg

0,01 (of nvt)

3

2

Voegenspoor (1 per 30 m)

‘NL’ (Tabel 2.3.h)

0,033

3

3

intern-voegloos wissel (1/lengte)

‘NL’ (Tabel 2.3.h)

1/wissellengte

3

4

niet-voegloos wissel (3/lengte)

‘NL’ (Tabel 2.3.h)

3/wissellengte

Tabel 2.3.f Spooroverdrachtsfuncties LH,TR voor tramspoorwegen

Frequentie [Hz]

In ballast ‘duo | medium’

Grasbaan

In asfalt

Trambaan-platen

In klinkers met Ortec klemplaat

50

50,0

83,4

76,9

82,5

77,2

63

56,1

85,3

78,8

84,5

79,1

80

64,1

89,2

82,7

88,3

83,0

100

72,5

88,4

74,8

84,8

85,4

125

75,8

87,8

73,6

84,4

84,9

160

79,1

89,1

77,9

85,9

86,4

200

83,6

87,9

88,3

85,5

83,6

250

88,7

92,3

92,7

90,2

88,7

315

89,6

93,4

93,8

91,2

89,6

400

89,7

95,9

87,4

90,5

84,2

500

90,6

97,2

87,9

91,5

83,3

630

93,8

98,5

92,5

94,3

91,2

800

100,6

104,4

106,0

105,5

101,2

1.000

104,7

108,3

109,9

109,4

105,2

1.250

106,3

109,9

111,5

111,0

106,8

1.600

107,1

107,8

109,2

108,1

106,4

2.000

108,8

109,6

111,0

109,9

108,0

2.500

109,3

110,2

111,8

110,6

108,3

3.150

109,4

96,0

107,5

106,6

105,0

4.000

109,7

98,4

106,8

105,2

100,9

5.000

110,0

98,8

107,0

105,3

100,4

6.300

109,8

98,8

96,1

106,2

97,7

8.000

110,0

99,1

96,4

106,2

98,0

10.000

110,5

99,7

97,0

106,6

98,6

Bodemfactor

Voor de Gs-waarde in de in deze bijlage opgenomen rekenmethode geldt een modelleervoorschrift. De gebruiker van de rekensoftware moet de bodemfactor kiezen die bij de afleiding van de Nederlandse bovenbouwcorrrectie gebruikt is. Deze is in tabel 2.3.g opgenomen.

Tabel 2.3.g Bodemfactor Gs voor hoofdspoorwegen, metrospoor en tramspoor

Bovenbouw

Gs

 

Bovenbouw

Gs

bb=1

1

 

bb=10

1

bb=2

1

 

bb=11

1

bb=3

1

 

bb=12

1

bb=4

0

 

Tramspoor:

bb=5

1

 

in ballast

1

bb=6

0

 

grasbaan

1

bb=7

1

 

in asfalt

0

bb=8

0

 

tramplaten

0

bb=9

0

 

in klinkers

0

Ruwheid

In tabel 2.3.h zijn de railruwheid Lr,TR, de voegruwheid voor stootgeluid LR,IMPACT en de relevante contactfilters A3 opgenomen.

Tabel 2.3.h Railruwheid, voegruwheid (stootgeluid), contactfilters

Golflengte [mm]

Lr,TR,i

LR,IMPACT,i ‘NL’

A3 ‘100 kN | 920 mm’

A3 ‘50 kN | 680 mm’

2.000

35,0

22,0

0,0

0,0

1.600

31,0

22,0

0,0

0,0

1.250

28,0

22,0

0,0

0,0

1.000

25,0

22,0

0,0

0,0

800

23,0

22,0

0,0

0,0

630

20,0

20,0

0,0

0,0

500

17,0

16,0

0,0

0,0

400

13,5

15,0

0,0

0,0

315

10,5

14,0

0,0

0,0

250

9,0

15,0

0,0

0,0

200

6,5

14,0

0,0

0,0

160

5,5

12,0

–0,1

0,0

125

5,0

11,0

–0,2

0,0

100

3,5

10,0

–0,3

–0,1

80

2,0

9,0

–0,6

–0,2

63

0,1

8,0

–1,0

–0,3

50

–0,2

6,0

–1,8

–0,7

40

–0,3

3,0

–3,2

–1,2

31,5

–0,8

2,0

–5,4

–2,0

25

–3,0

–3,0

–8,7

–4,1

20

–5,0

–8,0

–12,2

–6,0

16

–7,0

–13,0

–16,7

–9,2

12,5

–8,0

–17,0

–17,7

–13,8

10

–9,0

–19,0

–17,8

–17,2

8

–10,0

–22,0

–20,7

–17,7

6,3

–12,0

–25,0

–22,1

–18,6

5

–13,0

–26,0

–22,8

–21,5

4

–14,0

–32,0

–24,0

–22,3

3,15

–15,0

–35,0

–24,5

–23,1

2,5

–16,0

–40,0

–24,7

–24,4

2

–17,0

–43,0

–27,0

–24,5

1,6

–18,0

–45,0

–27,8

–25,0

1,25

–19,0

–47,0

–28,6

–28,0

1

–19,0

–49,0

–29,4

–28,8

0,8

–19,0

–50,0

–30,2

–29,6

Bruggeluid

De brugoverdrachtsfunctie LH,bridge en spooroverdrachtsfunctie LH,TR die voor een stalen spoorbrug worden gehanteerd, hangen enkel af van de voor die spoorbrug vastgestelde toeslagwaarden in de 500 Hz en 1.000 Hz octaafband. De voor spoorvoertuigcategorie 8 vastgestelde waarden in die octaafbanden worden daartoe rekenkundig gemiddeld en afgerond op een geheel getal.

Tabel 2.3.i1 Geluidemissie stalen bruggen

Afgerond gemiddelde van de toeslag in de 500 Hz en 1.000 Hz octaafband

Spooroverdrachtsfunctie van Tabel 2.3.d

Brugoverdrachtsfunctie volgens spectrumnummer sn van Tabel 2.3.i2

0 dB of minder

bb=1

sn=1

1 dB

bb=1

sn=2

2 dB

bb=1

sn=3

3 dB

bb=1

sn=4

4 dB

bb=1

sn=5

5 dB

bb=1

sn=6

6 dB

bb=8

sn=4

7 dB

bb=8

sn=5

8 dB

bb=8

sn=6

9 dB

bb=6

sn=5

10 dB

bb=6

sn=7

11 dB

bb=6

sn=8

12 dB of meer

bb=6

sn=9

Tabel 2.3.i2 Brugoverdrachtsfuncties LH,bridge

Frequentie [Hz]

sn=1

sn=2

sn=3

sn=4

sn=5

sn=6

sn=7

sn=8

sn=9

50

76,2

78,2

80,2

82,2

83,2

84,2

85,2

87,2

89,2

63

78,1

80,1

82,1

84,1

85,1

86,1

87,1

89,1

91,1

80

82,0

84,0

86,0

88,0

89,0

90,0

91,0

93,0

95,0

100

85,0

87,0

89,0

91,0

92,0

93,0

94,0

96,0

98,0

125

85,4

87,4

89,4

91,4

92,4

93,4

94,4

96,4

98,4

160

87,0

89,0

91,0

93,0

94,0

95,0

96,0

98,0

100,0

200

83,5

85,5

87,5

89,5

90,5

91,5

92,5

94,5

96,5

250

87,7

89,7

91,7

93,7

94,7

95,7

96,7

98,7

100,7

315

88,4

90,4

92,4

94,4

95,4

96,4

97,4

99,4

101,4

400

90,4

92,4

94,4

96,4

97,4

98,4

99,4

101,4

103,4

500

91,7

93,7

95,7

97,7

98,7

99,7

100,7

102,7

104,7

630

93,5

95,5

97,5

99,5

100,5

101,5

102,5

104,5

106,5

800

98,1

100,1

102,1

104,1

105,1

106,1

107,1

109,1

111,1

1.000

100,8

102,8

104,8

106,8

107,8

108,8

109,8

111,8

113,8

1.250

103,0

105,0

107,0

109,0

110,0

111,0

112,0

114,0

116,0

1.600

98,2

100,2

102,2

104,2

105,2

106,2

107,2

109,2

111,2

2.000

97,8

99,8

101,8

103,8

104,8

105,8

106,8

108,8

110,8

2.500

98,3

100,3

102,3

104,3

105,3

106,3

107,3

109,3

111,3

3.150

90,3

92,3

94,3

96,3

97,3

98,3

99,3

101,3

103,3

4.000

82,4

84,4

86,4

88,4

89,4

90,4

91,4

93,4

95,4

5.000

77,9

79,9

81,9

83,9

84,9

85,9

86,9

88,9

90,9

6.300

70,7

72,7

74,7

76,7

77,7

78,7

79,7

81,7

83,7

8.000

66,1

68,1

70,1

72,1

73,1

74,1

75,1

77,1

79,1

10.000

61,8

63,8

65,8

67,8

68,8

69,8

70,8

72,8

74,8

Voor betonnen bruggen wordt de brugoverdrachtsfunctie van sn=1 gebruikt in combinatie met de spooroverdrachtsfunctie horende bij bovenbouw die op de brug aanwezig is.

Voertuigparameters

Tabel 2.3.j Overzichtstabel parameterwaarden per voertuigtype

Voertuigtype

Voertuiglengte

Na/ voertuig

LH,VEH

LW,0,idling

A3

Lr,VEH

Cat 1

26

4

‘920 mm’

‘cat1 | A’

‘100 kN | 920 mm’

De wielruwheid is voor elke categorie apart bepaald. De parameterwaarden staan in tabel 2.3.m

Cat 2

26,6

4

‘920 mm’

nvt

‘100 kN | 920 mm’

Cat 3

26,1

4

‘920 mm’

‘cat3 | A’

‘100 kN | 920 mm’

Cat 4

15

4

‘920 mm’

nvt

‘100 kN | 920 mm’

Cat 5

15

4

‘920 mm’

‘cat5 | AB’

‘100 kN | 920 mm’

Cat 6

26,2

4

‘920 mm’

‘cat6 | AB’

‘100 kN | 920 mm’

Cat 7

30

6

‘680 mm’

nvt

‘50 kN | 680 mm’

Cat 8

27

4

‘920 mm’

‘cat8 | A’

‘100 kN | 920 mm’

Cat 91

199

25

‘920 mm’

‘cat9 | AB’

‘100 kN | 920 mm’

Cat 10

15

3

‘A32’

‘cat10 | A’

‘50 kN | 680 mm’

Cat 11

15

4

‘920 mm’

nvt

‘100 kN | 920 mm’

Cat 12

19,2

2,6

‘840 mm’

‘cat12 | A’

‘100 kN | 920 mm’

Trams

29

6

‘680 mm’

nvt

‘50 kN | 680 mm’

 

1 Enkel voor cat. 9 zijn ook aerodynamische bronvermogens beschikbaar: zie tabel 2.3.n

Tabel 2.3.k Voertuigoverdrachtsfuncties LH,VEH

Frequentie[Hz]

‘920 mm’

‘840 mm’

‘680 mm’

‘A32’

50

75,4

75,4

75,4

62,7

63

77,3

77,3

77,3

67,6

80

81,1

81,1

81,1

70,6

100

84,1

84,1

84,1

80,4

125

83,3

82,8

82,8

84,4

160

84,3

83,3

83,3

89,0

200

86,0

84,1

83,9

87,9

250

90,1

86,9

86,3

87,7

315

89,8

87,9

88,0

81,4

400

89,0

89,9

92,2

77,6

500

88,8

90,9

93,9

85,6

630

90,4

91,5

92,5

89,1

800

92,4

91,5

90,9

90,9

1.000

94,9

93,0

90,4

96,1

1.250

100,4

98,7

93,2

98,0

1.600

104,6

101,6

93,5

108,0

2.000

109,6

107,6

99,6

112,0

2.500

114,9

111,9

104,9

113,0

3.150

115,0

114,5

108,0

105,0

4.000

115,0

114,5

111,0

107,0

5.000

115,5

115,0

111,5

103,0

6.300

115,6

115,1

111,6

99,9

8.000

116,0

115,5

112,0

100,3

10.000

116,7

116,2

112,7

101,0

Tabel 2.3.l Tractiegeluid LW,0,idling per categorie

Frequentie [Hz]

‘cat1 | A’

‘cat3 | A’

‘cat5 | AB’

‘cat6 | AB’

‘cat8 | A’

‘cat9 | AB’

‘cat10 | A’

‘cat12 | A’

50

0,0

0

0,0

0

109,0

109,0

0,0

0,0

99,6

0

98,0

98,0

0,0

0

0

0

63

0,0

0

0,0

0

109,0

109,0

0,0

0,0

99,6

0

98,0

98,0

0,0

0

0

0

80

0,0

0

0,0

0

109,0

109,0

0,0

0,0

99,6

0

98,0

98,0

0,0

0

0

0

100

0,0

0

97,0

0

95,0

95,0

93,1

93,1

86,6

0

98,0

98,0

95,7

0

100,6

0

125

0,0

0

97,0

0

95,0

95,0

93,1

93,1

86,6

0

98,0

98,0

95,7

0

100,6

0

160

0,0

0

97,0

0

95,0

95,0

93,1

93,1

86,6

0

98,0

98,0

95,7

0

100,6

0

200

98,1

0

107,0

0

103,0

103,0

103,1

103,1

95,6

0

101,0

98,7

0,0

0

86,6

0

250

98,1

0

107,0

0

103,0

103,0

103,1

103,1

95,6

0

101,0

98,7

0,0

0

86,6

0

315

98,1

0

107,0

0

103,0

103,0

103,1

103,1

95,6

0

101,0

98,7

0,0

0

86,6

0

400

0,0

0

0,0

0

103,0

103,0

0,0

0,0

101,6

0

106,0

103,7

0,0

0

98,6

0

500

0,0

0

0,0

0

103,0

103,0

0,0

0,0

101,6

0

106,0

103,7

0,0

0

98,6

0

630

0,0

0

0,0

0

103,0

103,0

0,0

0,0

101,6

0

106,0

103,7

0,0

0

98,6

0

800

0,0

0

0,0

0

94,0

94,0

0,0

0,0

96,6

0

104,0

101,7

0,0

0

0

0

1.000

0,0

0

0,0

0

94,0

94,0

0,0

0,0

96,6

0

104,0

101,7

0,0

0

0

0

1.250

0,0

0

0,0

0

94,0

94,0

0,0

0,0

96,6

0

104,0

101,7

0,0

0

0

0

1.600

0,0

0

0,0

0

96,0

96,0

0,0

0,0

0,0

0

94,0

91,7

0,0

0

0

0

2.000

0,0

0

0,0

0

96,0

96,0

0,0

0,0

0,0

0

94,0

91,7

0,0

0

0

0

2.500

0,0

0

0,0

0

96,0

96,0

0,0

0,0

0,0

0

94,0

91,7

0,0

0

0

0

3.150

0,0

0

0,0

0

0,0

0,0

0,0

0,0

0,0

0

95,0

92,7

0,0

0

0

0

4.000

0,0

0

0,0

0

0,0

0,0

0,0

0,0

0,0

0

95,0

92,7

0,0

0

0

0

5.000

0,0

0

0,0

0

0,0

0,0

0,0

0,0

0,0

0

95,0

92,7

0,0

0

0

0

6.300

0,0

0

0,0

0

0,0

0,0

0,0

0,0

0,0

0

92,0

89,7

0,0

0

0

0

8.000

0,0

0

0,0

0

0,0

0,0

0,0

0,0

0,0

0

92,0

89,7

0,0

0

0

0

10.000

0,0

0

0,0

0

0,0

0,0

0,0

0,0

0,0

0

92,0

89,7

0,0

0

0

0

Tabel 2.3.m Wielruwheid Lr,VEH per voertuigtype

Golflengte [mm]

Cat 1

Cat 2

Cat 3

Cat 4

Cat 5

Cat 6

Cat 7

Cat 8

Cat 9

Cat 10

Cat 11

Cat 12

Trams

2.000

24,8

24,8

24,8

24,8

24,8

24,8

29,9

24,8

25,1

24,8

24,8

24,0

12,3

1.600

24,8

24,8

24,8

24,8

24,8

24,8

29,9

24,8

25,1

24,8

24,8

24,0

12,3

1.250

24,8

24,8

24,8

24,8

24,8

24,8

28,5

24,8

22,1

24,8

24,8

24,0

12,3

1.000

24,8

24,8

24,8

24,8

24,8

24,8

27,6

24,8

20,0

24,8

24,8

24,0

12,3

800

24,8

24,8

24,8

24,8

24,8

24,8

27,2

24,8

19,0

24,8

24,8

24,0

12,3

630

23,3

23,3

23,3

24,7

24,7

23,3

25,4

23,3

14,0

24,0

23,3

24,0

12,3

500

14,7

21,7

14,7

17,0

17,0

14,7

19,7

14,7

9,0

14,0

14,7

22,0

12,3

400

11,0

17,6

14,0

11,0

11,0

12,4

16,9

9,7

7,0

11,0

9,7

20,0

12,3

315

10,0

14,6

12,0

10,0

10,0

9,4

13,2

6,7

1,4

10,0

15,9

21,0

12,3

250

7,0

13,7

11,0

10,0

10,0

6,7

9,1

6,7

3,1

8,0

16,3

17,0

12,3

200

6,0

14,3

11,0

8,0

8,0

7,4

8,4

5,4

5,4

6,0

13,0

14,0

12,9

160

5,2

14,6

10,1

9,1

9,1

9,7

8,9

8,3

6,6

4,0

13,1

12,0

10,9

125

8,3

14,7

9,3

12,2

12,2

7,1

6,1

8,6

6,4

2,0

12,2

11,0

8,0

100

7,4

15,0

4,9

13,3

13,3

4,9

7,0

8,4

4,6

–3,4

9,4

10,0

5,2

80

5,6

14,3

6,2

12,2

12,2

6,2

6,5

6,5

5,6

–4,7

8,5

9,0

1,4

63

6,5

13,8

4,7

10,6

10,6

4,7

3,6

7,5

6,5

–6,4

5,3

8,0

–1,7

50

7,6

10,4

4,6

10,4

9,6

4,6

–0,4

4,7

0,9

–6,9

4,7

0,0

–3,9

40

8,2

10,9

5,1

8,6

7,2

5,1

–0,9

4,4

1,8

–6,5

0,9

–6,0

–6,1

31,5

8,9

8,9

1,3

8,9

8,0

1,3

–0,9

1,2

3,5

–7,2

1,3

–8,0

–7,2

25

10,1

10,5

3,9

9,2

9,2

3,9

0,1

2,3

3,8

–6,2

3,1

–2,0

–6,2

20

11,3

12,3

4,7

8,4

8,4

4,7

0,5

4,7

3,9

–7,3

2,2

–2,0

–7,6

16

12,3

12,3

7,6

12,3

12,3

7,6

0,5

5,4

4,1

–7,6

3,3

5,0

–7,8

12,5

7,6

6,6

5,5

8,4

8,4

5,5

2,1

1,2

2,3

–6,2

5,7

1,0

–6,2

10

3,5

5,3

4,7

4,4

4,4

4,7

5,6

–1,3

0,3

–4,6

3,5

–2,0

–4,7

8

4,6

4,3

4,6

5,2

5,2

4,6

0,9

–1,8

–0,2

–5,6

2,4

–2,0

–5,7

6,3

–0,2

–0,2

0,8

2,7

2,7

0,8

–0,1

–2,9

0,3

–7,6

1,9

–1,0

–7,8

5

–1,5

–1,5

0,7

0,4

0,4

0,7

2,0

–5,3

–1,5

–8,1

–1,3

–2,0

–8,3

4

–5,6

–5,6

–0,2

–4,1

–0,8

–0,2

–1,4

–7,1

–4,1

–8,0

–4,1

–6,0

–8,2

3,15

–7,2

–8,4

–2,8

–5,7

–2,4

–2,8

–2,6

–9,3

–6,0

–8,8

–5,7

–5,0

–8,8

2,5

–12,1

–11,6

–7,9

–9,1

–6,0

–7,9

–2,3

–11,7

–6,8

–9,0

–9,1

–5,0

–8,9

2

–11,4

–9,8

–7,5

–9,1

–5,6

–7,5

–4,2

–11,0

–5,3

–11,1

–9,1

–7,0

–11,0

1,6

–12,5

–9,8

–7,6

–10,3

–6,7

–7,6

–5,8

–12,5

–5,4

–12,6

–10,3

–10,0

–12,6

1,25

–13,5

–10,5

–8,1

–11,6

–8,0

–8,1

–4,1

–13,9

–5,9

–11,2

–11,6

–13,0

–11,4

1

–13,8

–10,8

–8,3

–12,4

–9,8

–8,3

–4,3

–14,7

–6,1

–11,5

–12,4

–15,0

–11,6

0,8

–13,9

–10,9

–8,4

–12,5

–11,3

–8,4

–4,5

–15,2

–6,2

–11,7

–12,5

–15,0

–11,9

Tabel 2.3.n Aerodynamisch geluid LW,0 voor voertuigtype categorie 9

Frequentie [Hz]

‘Cat9 aero’

LW,0,1 | LW,0,2

 

Frequentie [Hz]

‘Cat9 aero’

LW,0,1 | LW,0,2

alpha

50

50

       

50

135,0

129,0

 

800

125,5

119,5

63

135,0

129,0

 

1.000

125,5

119,5

80

135,0

129,0

 

1.250

125,5

119,5

100

128,0

122,0

 

1.600

128,0

125,0

125

128,0

122,0

 

2.000

128,0

125,0

160

128,0

122,0

 

2.500

128,0

125,0

200

127,0

121,0

 

3.150

123,0

117,0

250

127,0

121,0

 

4.000

123,0

117,0

315

127,0

121,0

 

5.000

123,0

117,0

400

125,5

119,5

 

6.300

119,0

113,0

500

125,5

119,5

 

8.000

119,0

113,0

630

125,5

119,5

 

10.000

119,0

113,0

2.4. Industrielawaai

[Regeling vervallen per 01-01-2024]

2.4.1. Bronbeschrijving

[Regeling vervallen per 01-01-2024]

Classificatie van brontypen (punt, lijn, diffuus)

De afmetingen van de industriebronnen zijn zeer uiteenlopend. Ze kunnen zowel grote industriële fabrieken als kleine geconcentreerde bronnen zijn, zoals klein gereedschap of fabrieksmachines. Daarom moet voor de specifieke ter beoordeling voorliggende bron een relevante modelleringstechniek worden gebruikt. Afhankelijk van de omvang en de wijze waarop verschillende individuele bronnen zich over een gebied uitstrekken, waarbij elke bron tot hetzelfde industrieterrein behoort, kunnen deze als puntbronnen, bronlijnen of diffuse bronnen worden gemodelleerd. In de praktijk worden de berekeningen van het geluidseffect altijd op puntbronnen gebaseerd, maar verschillende puntbronnen kunnen worden gebruikt om een bijzonder complexe bron weer te geven, die zich hoofdzakelijk over een lijn of gebied uitstrekt.

Aantal en plaats van equivalente geluidsbronnen

De werkelijke geluidsbronnen worden gemodelleerd door middel van equivalente geluidsbronnen die door een of meer puntbronnen worden weergegeven zodat het totale geluidsvermogen van de werkelijke bron overeenkomt met de som van de individuele geluidsvermogens die toe te schrijven zijn aan de verschillende puntbronnen.

De algemene regels die bij de bepaling van het aantal te gebruiken puntbronnen worden toegepast, zijn:

  • lijn- of oppervlaktebronnen waarvan de grootste diameter minder dan de helft van de afstand tussen de bron en het waarneempunt is, kunnen als individuele puntbronnen worden gemodelleerd;

  • bronnen waarvan de grootste afmeting meer dan de helft van de afstand tussen de bron en het waarneempunt is, moeten als een reeks incoherente puntbronnen in een lijn of als een reeks incoherente puntbronnen over een gebied worden gemodelleerd, zodanig dat voor elk van deze bronnen aan de voorwaarde van de halve afstand wordt voldaan. De verdeling over een gebied kan een verticale verdeling van puntbronnen omvatten;

  • voor bronnen waarvan de grootste hoogteafmetingen meer dan 2 m bedragen of die vlakbij de grond zijn, moet bijzondere aandacht aan de hoogte van de bron worden besteed. Verdubbeling van het aantal bronnen, door ze alleen in de z-component te herverdelen, leidt niet noodzakelijkerwijs tot aanzienlijk betere resultaten voor deze bron;

  • voor elke bron geldt dat een verdubbeling van het aantal bronnen over het brongebied (in alle dimensies) niet noodzakelijkerwijs tot aanzienlijk betere resultaten leidt.

Een vaste positie van de equivalente geluidsbronnen is niet mogelijk, gezien het grote aantal configuraties dat een industrieterrein kan hebben. Goede praktijken zijn normaliter van toepassing.

Geluidsvermogensemissie

Algemeen

De volgende informatie omvat de volledige reeks invoergegevens voor berekeningen van geluidsvoortplanting met de methoden die voor geluidskartering worden gebruikt:

  • uitgestraald geluidsvermogensspectrum in octaafbanden,

  • bedrijfstijden (overdag, 's avonds, 's nachts, op basis van jaarlijks gemiddelde),

  • locatie (coördinaten x, y) en hoogte (z) van de geluidsbron,

  • soort bron (punt, lijn, diffuus),

  • afmetingen en oriëntatie,

  • bedrijfscondities van de bron,

  • richteffect van de bron.

Het geluidsvermogen van de puntbron en diffuse bron moet worden gedefinieerd als:

  • voor een puntbron, geluidsvermogen Lw en richteffect als een functie van de drie orthogonale coördinaten (x,y,z),

  • voor een diffuse bron, geluidsvermogen per vierkante meter Lw/m2, en geen richteffect (kan horizontaal of verticaal zijn).

Het geluidsvermogen van twee typen bronlijnen moet worden gedefinieerd als:

  • bronlijnen die transportbanden, pijpleidingen enz., weergeven, geluidsvermogen per meter lengte Lw’ en richteffect als een functie van de twee orthogonale coördinaten op de as van de bronlijn,

  • bronlijnen die rijdende voertuigen weergeven, worden berekend volgens formule 2.2.1

De invoer van de bedrijfsuren is essentieel voor de berekening van geluidsniveaus. De bedrijfsuren worden voor de dag-, avond- en nachtperiode gegeven en, als de voortplanting afwijkende meteorologische categorieën gebruikt die tijdens elke dag-, nacht- en avondperiode zijn gedefinieerd, wordt een verfijnde verdeling van de bedrijfsuren gegeven in deelperioden die congrueren met de verdeling van meteorologische categorieën. Deze informatie berust op een jaarlijks gemiddelde.

De correctie voor de bedrijfsuren, die aan het brongeluidsvermogen wordt toegevoegd om het gecorrigeerde geluidsvermogen te bepalen dat voor de berekeningen over elke tijdsperiode CW in dB wordt gebruikt, wordt als volgt berekend:

Bijlage 267874.png

(2.4.1)

waarbij:

T de actieve brontijd per periode is op basis van een jaarlijks gemiddelde situatie, in uren;

Tref de referentieperiode in uren is (bv. dag is 12 uur, avond is 4 uur, nacht is 8 uur).

Voor de dominantere bronnen wordt de correctie van de jaarlijkse gemiddelde bedrijfsuren binnen minstens 0,5 dB tolerantie geschat om een aanvaardbare nauwkeurigheid (die gelijk is aan een onzekerheid van minder dan 10% in de definitie van de actieve brontijd) te verkrijgen.

Richteffect van de bron

Het richteffect van de bron is nauw verbonden met de positie van de equivalente geluidsbron naast of vlakbij oppervlakken. Omdat de voortplantingsmethode met de reflectie van het nabijgelegen oppervlak en de geluidsabsorptie ervan rekening houdt, is het noodzakelijk om de locatie van de nabijgelegen oppervlakken zorgvuldig in aanmerking te nemen. In het algemeen worden de volgende twee gevallen altijd onderscheiden:

  • brongeluidsvermogen en richteffect worden ten opzichte van een bepaalde werkelijke bron bepaald en gegeven wanneer die zich in vrij veld bevindt (exclusief het terreineffect). Dit is in overeenstemming met de definities met betrekking tot de voortplanting, indien aangenomen wordt dat er zich geen nabijgelegen oppervlak op minder dan 0,01 m van de bron bevindt en dat oppervlakken op een afstand van 0,01 m of meer in de berekening van de voortplanting worden opgenomen;

  • brongeluidsvermogen en richteffect worden ten opzichte van een bepaalde werkelijke bron bepaald en gegeven wanneer die in een specifieke locatie is geplaatst, en daarom zijn brongeluidsvermogen en richteffect in feite ‘equivalent’ omdat ze de modellering van het effect van de nabijgelegen oppervlakken bevatten. Dit wordt bepaald in het ‘half-vrije veld’ volgens de definities met betrekking tot de voortplanting. In dit geval worden de gemodelleerde nabijgelegen oppervlakken van de berekening van de voortplanting uitgesloten.

Het richteffect wordt in de berekening uitgedrukt als een factor ∆LW,dir,xyz(x,y,z) die aan het geluidsvermogen wordt toegevoegd om het juiste richtingsafhankelijke geluidsvermogen van een referentiegeluidsbron te verkrijgen, zoals gezien door de geluidsvoortplanting in de gegeven richting. De factor kan worden gegeven als een functie van de richtingsvector gedefinieerd door (x,y,z) met

Bijlage 267875.png

Dit richteffect kan ook worden uitgedrukt door middel van andere coördinatensystemen zoals hoekige coördinatenstelsels.

2.5. Berekening van geluidsvoortplanting voor weg-, spoor- en industriebronnen

[Regeling vervallen per 01-01-2024]

2.5.1. Omvang en toepasselijkheid methode

[Regeling vervallen per 01-01-2024]

Dit document omschrijft een methode voor de berekening van de geluidsdemping tijdens de voortplanting ervan buitenshuis. Met de bekende kenmerken van de bron voorspelt deze methode het equivalente constante geluidsniveau op een waarneempunt dat overeenstemt met twee bepaalde soorten van atmosferische omstandigheden:

  • voortplantingscondities met neerwaartse breking (positieve verticale gradiënt van effectieve geluidssnelheid) van de bron naar het waarneempunt,

  • homogene atmosferische omstandigheden (geen verticale gradiënt van effectieve geluidssnelheid) over het gehele voortplantingsgebied.

De in dit document beschreven berekeningsmethode is van toepassing voor weg-, spoor- en industriebronnen. Deze methode is daarom met name van toepassing op de infrastructuur van wegen en spoorlijnen. Luchtvervoer wordt alleen in het toepassingsgebied van de methode opgenomen voor het lawaai dat tijdens grondoperaties wordt voortgebracht, waarbij de start en landing worden uitgesloten.

Industriële infrastructuren die impulsieve of sterk tonale geluiden voortbrengen zoals beschreven in ISO 1996-2: 2007, vallen niet onder het toepassingsgebied van deze methode.

De berekeningsmethode levert geen resultaten voor voortplantingscondities met opwaartse breking (negatieve verticale gradiënt van de effectieve geluidssnelheid), maar deze condities worden bij de berekening van Lden door homogene condities benaderd.

Voor de berekening van de demping door atmosferische absorptie in het geval van vervoersinfrastructuur, worden de temperatuur en vochtigheid volgens ISO 9613-1:1996 berekend.

De methode levert resultaten per octaafband van 63 Hz tot 8 000 Hz. De berekeningen worden voor elk van de middenfrequenties verricht.

Objecten die meer dan 15° aflopen in verhouding tot de verticaal worden niet als reflecterende objecten beschouwd, maar worden in aanmerking genomen bij alle andere aspecten van de voortplanting, zoals grondeffecten en diffractie.

Een enkel scherm wordt als een enkele diffractieberekening berekend, twee of meer schermen in een enkel pad worden als een volgende set van enkele diffracties behandeld door toepassing van de procedure die nader wordt omschreven.

2.5.2. Gebruikte definities

[Regeling vervallen per 01-01-2024]

Alle afstanden, hoogten, afmetingen in dit document worden in meter (m) uitgedrukt. De notatie MN staat voor de afstand in 3 dimensies (3D) tussen de punten M en N, gemeten volgens een rechte lijn die deze punten verbindt.

Het is gebruikelijk dat werkelijke hoogten verticaal worden gemeten in een richting loodrecht op het horizontale vlak. Hoogten van punten boven de plaatselijke grond worden aangeduid met h, absolute hoogten van punten en de absolute hoogte van de grond worden aangeduid met de letter H.

Om het werkelijke reliëf van de grond langs een voortplantingspad in aanmerking te nemen, is het begrip ‘equivalente hoogte’ ingevoerd, aangeduid met de letter z. Dit vervangt de werkelijke hoogten in de vergelijkingen van het grondeffect.

De geluidsniveaus, aangeduid met de hoofdletter L, worden uitgedrukt in decibel (dB) per frequentieband wanneer index A wordt weggelaten. De geluidsniveaus in decibel dB(A) krijgen de index A.

De som van de geluidsniveaus als gevolg van wederzijds incoherente bronnen wordt aangeduid met het teken

Bijlage 267876.png

in overeenstemming met de volgende definitie:

Bijlage 267877.png

(2.5.1)

2.5.3. Geometrische overwegingen

[Regeling vervallen per 01-01-2024]

Segmentatie van de bron

Werkelijke bronnen worden beschreven door een reeks puntbronnen of, bij spoorverkeer en wegverkeer, door incoherente bronlijnen. De voortplantingsmethode gaat ervan uit dat lijn- of diffuse bronnen voorafgaand zijn gesplitst om door een aantal equivalente puntbronnen te worden weergegeven. Dit kan bij voorbewerking van de brongegevens zijn opgetreden of in de pathfinder-component van de berekeningssoftware zijn ontstaan. De wijze waarop dit is gebeurd, valt buiten het toepassingsgebied van de onderhavige methode.

Voortplantingspaden

De methode werkt op een geometrisch model dat bestaat uit een reeks verbonden grond- en obstakeloppervlakken. Een verticaal voortplantingspad wordt op een of meerdere verticale vlakken ten opzichte van het horizontale vlak ingezet. Voor trajecten die reflecties op verticale vlakken omvatten die niet orthogonaal op het incidentvlak zijn, wordt daarna een ander verticaal vlak in aanmerking genomen, waaronder het gereflecteerde deel van het voortplantingspad. In deze gevallen, waar meerdere verticale vlakken worden gebruikt om het gehele traject van de bron naar het waarneempunt te beschrijven, worden de verticale vlakken vervolgens afgevlakt, net als een uitvouwend Chinees kamerscherm.

Aanmerkelijke hoogten boven de grond

De equivalente hoogten worden verkregen van het gemiddelde grondvlak tussen de bron en het waarneempunt. Dit vervangt de werkelijke grond met een fictief vlak dat het gemiddelde profiel van de grond weergeeft.

Bijlage 267878.png
Figuur 2.5.a, Equivalente hoogten in verhouding tot de grond
  • 1: Werkelijk reliëf

  • 2: Gemiddeld vlak

De equivalente hoogte van een punt is zijn orthogonale hoogte in verhouding tot het gemiddelde grondvlak. De equivalente bronhoogte zS en de equivalente hoogte van het waarneempunt z0 kan daarom worden gedefinieerd. De afstand tussen de bron en het waarneempunt geprojecteerd over het gemiddelde grondvlak wordt aangeduid met dp.

Als de equivalente hoogte van een punt negatief wordt, dat wil zeggen als het punt zich onder het gemiddelde grondvlak bevindt, wordt een hoogte van nul aangehouden en dan is het equivalente punt identiek aan zijn eventuele spiegelpunt.

Berekening van het gemiddelde grondvlak

In het vlak van het pad kan de topografie (waaronder terrein, heuvels, spoortaluds en andere kunstmatige obstakels, gebouwen,...) aan de hand van een geordende verzameling van afzonderlijke punten (xk, Hk); k є {1,...,n} worden beschreven. Deze reeks punten definieert een polylijn of, op gelijke wijze, een reeks rechtlijnige segmenten Hk = akx + bk, x є [xk, x(k+1)]; k є {1,...,n}, waarbij:

Bijlage 267879.png

(2.5.2)

Het gemiddelde vlak wordt weergegeven door de rechte lijn Z = ax + b; x є [x1, xn], die aan de polylijn is aangepast door middel van een benadering van het kleinste kwadraat. De vergelijking van de gemiddelde lijn kan analytisch worden uitgewerkt.

Met behulp van:

Bijlage 267880.png

(2.5.3)

worden de coëfficiënten van de rechte lijn verkregen door:

Bijlage 267881.png

(2.5.4)

waarbij segmenten met xk+1 = xk buiten beschouwing worden gelaten bij de beoordeling van vergelijking 2.5.3.

Reflecties door gevels en andere verticale obstakels

Bijdragen van reflectie worden in aanmerking genomen door de invoering van spiegelbronnen, zoals hieronder beschreven.

2.5.4. Model voor geluidsvoortplanting

[Regeling vervallen per 01-01-2024]

Voor een waarneempunt R worden de berekeningen uitgevoerd in overeenstemming met de volgende stappen:

  • 1) op elk voortplantingspad:

    • berekening van de demping in gunstige omstandigheden,

    • berekening van de demping in homogene omstandigheden,

    • berekening van langdurig geluidsniveau voor elk pad.

  • 2) accumulatie van de langdurige geluidsniveaus voor alle paden die invloed hebben op een specifiek waarneempunt, zodat het totale geluidsniveau op het waarneempunt kan worden berekend.

Opgemerkt wordt dat alleen demping ten gevolge van het grondeffect (Aground) en diffractie (Adif) door meteorologische omstandigheden wordt beïnvloed.

2.5.5. Berekeningsproces

[Regeling vervallen per 01-01-2024]

Voor een puntbron S van richtingsafhankelijk geluidsvermogen LW,0,dir en voor een specifieke frequentieband wordt het equivalente constante geluidsniveau op het waarneempunt R in de gegeven atmosferische omstandigheden volgens de onderstaande vergelijkingen verkregen.

Geluidsniveau in gunstige omstandigheden (LF) voor een pad (S,R)

LF = LW,0,dirAF

(2.5.5)

De term AF geeft de totale demping weer langs het voortplantingspad in gunstige omstandigheden, en wordt als volgt uitgesplitst:

AF = Adiv + Aatm+Aboundary,F

(2.5.6)

waarbij

Adiv de demping door geometrische divergentie is;

Aatm de demping door atmosferische absorptie is;

Aboundary,F de demping door de grens van het voortplantingsmedium in gunstige omstandigheden is. De volgende termen kunnen erin vervat zijn:

  • Aground,F, de demping door de grond in gunstige omstandigheden;

  • Adif,F, de demping door diffractie in gunstige omstandigheden.

Voor een bepaald pad en bepaalde frequentieband zijn de volgende twee scenario's mogelijk:

  • ofwel Aground,F wordt zonder diffractie (Adif,F = 0 dB) en Aboundary,F = Aground,F berekend;

  • ofwel Adif,F wordt berekend. Het grondeffect wordt in aanmerking genomen in de Adif,F vergelijking zelf (Aground,F = 0 dB). Dit levert dus Aboundary,F = Adif,F op.

Geluidsniveau in homogene omstandigheden (LH) voor een pad (S,R)

De procedure is volkomen identiek aan het geval van gunstige omstandigheden in het vorige gedeelte.

LH = LW,0,dirAH

(2.5.7)

De term AH geeft de totale demping weer langs het voortplantingspad in homogene omstandigheden, en wordt als volgt uitgesplitst:

AH = Adiv + Aatm + Aboundary,H

(2.5.8)

waarbij

Adiv de demping door geometrische divergentie is;

Aatm de demping door atmosferische absorptie is;

Aboundary,H de demping door de grens van het voortplantingsmedium in homogene omstandigheden is. De volgende termen kunnen erin vervat zijn:

  • Aground,H, de demping door de grond in homogene omstandigheden;

  • Adif,H, de demping door diffractie in homogene omstandigheden.

Voor een bepaald pad en bepaalde frequentieband zijn de volgende twee scenario's mogelijk:

  • ofwel Aground,H(Adif,H = 0 dB) wordt zonder diffractie en Aboundary,H = Aground,H berekend;

  • ofwel Adif,H (Aground,H = 0 dB) wordt berekend. Het grondeffect wordt in de vergelijking Adif,H zelf in aanmerking genomen. Dit levert dus Aboundary,H = Adif,H op.

Statistische benadering in stedelijke gebieden voor een pad (S,R)

In stedelijke gebieden is een statistische benadering van de berekening van de geluidsvoortplanting achter de eerste lijn gebouwen eveneens toegestaan, mits deze methode naar behoren wordt gedocumenteerd, met inbegrip van relevante informatie over de kwaliteit van de methode. Deze methode kan de berekening van Aboundary,H en Aboundary,F vervangen door een benadering van de totale demping voor het rechtstreekse pad en alle reflecties. De berekening wordt op de gemiddelde dichtheid en gemiddelde hoogte van alle gebouwen in het gebied gebaseerd.

Langdurig geluidsniveau voor een pad (S,R)

Het ‘langdurige’ geluidsniveau langs een pad, uitgaande van een bepaalde puntbron, wordt verkregen uit de logaritmische som van de gewogen geluidsenergie in homogene omstandigheden en de geluidsenergie in gunstige omstandigheden.

Deze geluidsniveaus worden gewogen door het gemiddelde optreedfrequentie p van gunstige omstandigheden in de richting van het pad (S,R):

Bijlage 267882.png

(2.5.9a)

NB: De gebeurteniswaarden voor p worden in fracties uitgedrukt. Dus indien de frequentie van optreden 82% is, krijgt de vergelijking (2.5.9a) p = 0,82.

Optreedfrequentie per richting en periode

De gebeurteniswaarden voor p zijn richtingsafhankelijk en periode afhankelijk. De waarden p worden berekend met de volgende formules:

Bijlage 267883.png

(2.5.9b)

De voortplantingsrichting ξ is als volgt gedefinieerd:

Tabel 2.5.a Voorplantingsrichting

Hoek(ξ)

Van

Naar

0

Noord

Zuid

90

Oost

West

180

Zuid

Noord

270

West

Oost

Langdurig geluidsniveau op punt R voor alle paden

Het totale langdurige geluidsniveau op het waarneempunt voor een frequentieband wordt verkregen aan de hand van de energetische optelling van bijdragen van alle N-paden, met inbegrip van alle typen:

Bijlage 267884.png

(2.5.10)

waarbij:

n de index van de paden tussen S en R is.

Het in aanmerking nemen van reflectie door middel van spiegelbronnen wordt hieronder beschreven. De procentuele frequentie van gunstige omstandigheden bij reflectie van een pad op een verticaal obstakel wordt geacht identiek te zijn aan de frequentie van het rechtstreekse pad.

Als S’ de spiegelbron van S is, wordt het optreedfrequentie p’ van het pad (S’, R) beschouwd als gelijk te zijn aan optreedfrequentie p van het pad (Si, R).

Langdurig geluidsniveau op punt R in decibels A (dBA)

Het totale geluidsniveau in decibels A (dBA) wordt verkregen door de niveaus in elke frequentieband op te tellen:

Bijlage 267885.png

(2.5.11)

Waarbij i de index van de frequentieband is. AWC is de A-gewogen correctie als volgt:

Frequentie [Hz]

63

125

250

500

1.000

2.000

4.000

8.000

AWCf,i [dB]

–26,2

–16,1

–8,6

–3,2

0

1,2

1,0

–1,1

Dit niveau LAeq,LT vormt het eindresultaat, d.w.z. het A-gewogen geluidsdrukniveau over lange termijn op het waarneempunt op een bepaald referentietijdsinterval (bijvoorbeeld dag, avond, nacht of een kortere periode tijdens de dag, avond of nacht).

2.5.6. Berekening van geluidsvoortplanting voor weg-, spoor-, industriebronnen

[Regeling vervallen per 01-01-2024]

Geometrische divergentie

De demping door geometrische divergentie, Adiv, komt overeen met een vermindering van het geluidsniveau door de voortplantingsafstand. Voor een puntbron in vrij veld wordt de demping in dB verkregen door:

Adiv = 20lg(d) + 11

(2.5.12)

waarbij d de rechtstreekse schuine afstand in 3D is tussen de bron en het waarneempunt is.

Atmosferische absorptie

De demping door atmosferische absorptie Aatm tijdens voortplanting over een afstand d wordt verkregen in dB door de vergelijking:

Aatm = αatmd⁄1.000

(2.5.13)

waarbij:

d de rechtstreekse 3D schuine afstand tussen de bron en het waarneempunt is;

αatm de coëfficiënt van atmosferische demping in dB/km op de nominale middenfrequentie voor elke frequentieband is, in overeenstemming met ISO 9613-1.

De waarden van de αatm coëfficiënt worden gegeven voor een temperatuur van 15°C, een relatieve luchtvochtigheid van 70% en een atmosferische druk van 101 325 Pa. Zij worden met de nauwkeurige middenfrequenties van de frequentieband berekend. Deze waarden voldoen aan ISO 9613-1. Het meteorologische gemiddelde op lange termijn wordt gebruikt indien meteorologische gegevens beschikbaar zijn.

Tabel 2.5.b De luchtdempingscoëfficiënt lucht als functie van de octaafband

Octaafband

αatm [dB/km]

63

0,105

125

0,376

250

1,124

500

2,358

1.000

4,079

2.000

8,777

4.000

26,608

8.000

94,962

Grondeffect

De demping door het grondeffect is hoofdzakelijk het gevolg van de interferentie tussen het gereflecteerde geluid en het geluid dat zich rechtstreeks van de bron naar het waarneempunt voortplant. Het is fysiek verbonden aan de akoestische absorptie van de grond waarboven de geluidsgolf zich voortplant. Het is echter ook sterk afhankelijk van atmosferische omstandigheden tijdens voortplanting, omdat straalafbuiging de hoogte van het pad boven de grond wijzigt en de effecten van de grond en het land in de buurt van de bron meer of minder versterkt.

In het geval dat de voortplanting tussen de bron en het waarneempunt door een obstakel in het voortplantingsvlak wordt beïnvloed, wordt het grondeffect aan de kant van de bron en het waarneempunt afzonderlijk berekend. In dit geval verwijzen zs en zr naar de equivalente positie van de bron en/of het waarneempunt, zoals aangegeven hieronder waar de berekening van de diffractie Adif wordt gepresenteerd.

Akoestische karakterisering van grond

De akoestische absorptie-eigenschappen van de grond houden voornamelijk verband met zijn porositeit. Compacte grond is in het algemeen reflecterend en poreuze grond is absorberend.

Voor operationele berekeningen wordt de akoestische absorptie van een grond weergegeven met een dimensieloze coëfficiënt G, tussen 0 en 1. G is onafhankelijk van de frequentie. Tabel 2.5.c geeft de G-waarden voor de grond in de openlucht. Het gemiddelde van de coëfficiënt G over een pad krijgt in het algemeen waarden tussen 0 en 1.

Tabel 2.5.c G-waarden voor verschillende soorten grond

Beschrijving

Type

(kPa • s/m2)

G-waarde

Zeer zacht (sneeuw of mosachtig)

A

12,5

1

Zachte bosgrond (kort, dicht heideachtig of dik mos)

B

31,5

1

Niet-compacte, losse grond (veen, gras, losse aarde)

C

80

1

Normale niet-compacte grond (bosbodem, weiden)

D

200

1

Compact land en grind (compacte gazons, parkland)

E

500

0,7

Compacte dichte grond (grindweg, parkeerplaats)

F

2.000

0,3

Harde oppervlakken (veelal normaal asfalt, beton)

G

20.000

0

Zeer harde en dichte oppervlakken (dicht asfalt, beton, water)

H

200.000

0

Gpath wordt gedefinieerd als de fractie van absorberende grond die over het gehele pad aanwezig is.

Wanneer de bron en het waarneempunt vlakbij elkaar zijn zodat dp ≤ 30(zs+ zr), is het verschil tussen de grondsoort nabij de bron en de grondsoort nabij het waarneempunt te verwaarlozen. Daarom wordt om met deze opmerking rekening te houden de grondfactor Gpath uiteindelijk als volgt gecorrigeerd:

Bijlage 267886.png

(2.5.14)

waarbij GS de grondfactor van het brongebied is. GS = 0 voor wegdekken6, betonplatenspoor. GS = 1 voor sporen in ballastbed. Er is geen algemeen antwoord in het geval van industriële bronnen en fabrieken.

G kan gerelateerd worden aan de stromingsweerstand.

Bijlage 267887.png
Figuur 2.5.b, Bepaling van de grondcoëfficiënt Gpath over een voortplantingspad

De afstanden dn worden bepaald door een 2D-projectie op het horizontale vlak.

De volgende twee subsecties over berekeningen in homogene en gunstige omstandigheden introduceren de generieke

Bijlage 267888.png

en

Bijlage 267889.png

notaties voor de absorptie van de grond. Tabel 2.5.d geeft het verband tussen deze notaties en de variabelen Gpath en G’path.

Bijlage 267890.png

Berekeningen in homogene omstandigheden

De demping door het grondeffect in homogene omstandigheden wordt berekend op basis van de volgende vergelijkingen:

indien G’path≠ 0

Bijlage 267891.png

(2.5.15)

waarbij

Bijlage 267892.png

fm de nominale middenfrequentie is van de frequentieband in kwestie, in Hz, c de snelheid van het geluid in de lucht is, gelijk aan 340 m/s, en Cf wordt bepaald door:

Bijlage 267893.png

(2.5.16)

waarbij de waarden van w worden verkregen door de onderstaande vergelijking:

Bijlage 267894.png

(2.5.17)

Bijlage 267895.png

kan gelijk zijn aan Gpath of G’path, afhankelijk van het feit of het grondeffect met of zonder diffractie wordt berekend, en volgens de aard van de grond onder de bron (werkelijke of afgebogen bron). Dit wordt in de volgende subsecties vermeld en is in tabel 2.5.d samengevat.

Bijlage 267896.png

(2.5.18)

is de ondergrens van Aground,H.

Voor een pad (Si,R) in homogene omstandigheden zonder diffractie:

Bijlage 267897.png

= G’path

Bijlage 267898.png

= G’path

Met diffractie, raadpleeg de sectie over diffractie voor de definities van

Bijlage 267899.png

en

Bijlage 267900.png

.

Indien Gpath = 0: Aground,H= -3 dB

De term

Bijlage 267901.png

houdt rekening met het feit dat wanneer de bron en het waarneempunt ver van elkaar liggen, het eerste reflectievlak zich niet langer op het platform maar op natuurlijke grond bevindt.

Berekening in gunstige omstandigheden

Het grondeffect in gunstige omstandigheden wordt berekend met de vergelijking van Aground,H, mits de volgende wijzigingen worden gemaakt:

Indien Gpath ≠ 0

  • a) In de vergelijking 2.5.15 (Aground,H) worden de hoogten zs en zr vervangen door respectievelijk zs + δzs + δzT en zr + δzr + δzT, waarbij

    Bijlage 267902.png

    (2.5.19)

    a0 = 2 • 10-4m-1 is het omgekeerde van de kromtestraal

    Bijlage 267903.png
  • b) De ondergrens van Aground,F (berekend met ongewijzigde hoogten) is afhankelijk van de geometrie van het pad:

Bijlage 267904.png

(2.5.20)

Indien Gpath = 0: Aground,F = Aground,F,min

De hoogtecorrecties δzs en δzr brengen het effect van de afbuiging van de geluidstralen over. δzT verdisconteert het effect van de turbulentie.

Bijlage 267905.png

kan ook gelijk zijn aan of Gpath of G’path, afhankelijk van het feit of het grondeffect met of zonder diffractie wordt berekend, en volgens de aard van de grond onder de bron (werkelijke of afgebogen bron). Dit wordt in de volgende subsecties nader bepaald.

Voor een pad (Si, R) in gunstige omstandigheden zonder diffractie:

Bijlage 267906.png

= Gpath in vergelijking (2.5.17)

Bijlage 267907.png

= G’path

Met diffractie, raadpleeg de volgende sectie voor de definities van

Bijlage 267908.png

en

Bijlage 267909.png

Diffractie

Gewoonlijk wordt de diffractie aan de bovenkant van elk obstakel op het voortplantingspad onderzocht. Als het pad ‘hoog genoeg’ over de diffractierand loopt, kan Adif = 0 worden vastgesteld en een rechtstreeks zicht worden berekend, met name door de beoordeling van Aground.

In de praktijk worden de volgende specificaties in aanmerking genomen in het unieke verticale vlak dat zowel de bron als het waarneempunt bevat (een uitvouwend Chinees kamerscherm in het geval van een traject met reflecties). De rechtstreekse straal van de bron naar het waarneempunt is een rechte lijn onder homogene voortplantingscondities en een gebogen lijn (boog waarvan de straal afhankelijk is van de lengte van de rechtstreekse straal) onder gunstige voortplantingscondities.

Als de rechtstreekse straal niet is geblokkeerd, wordt de rand D gezocht die het grootste padverschil δ oplevert (de kleinste absolute waarde, omdat deze padverschillen negatief zijn). Diffractie wordt in aanmerking genomen als

  • dit padverschil groter is dan -λ/20; en

  • als aan het ‘Rayleigh criterium’ is voldaan.

Dit is het geval als δ groter is dan λ/4 – δ*, waarbij δ* het padverschil is dat met deze zelfde rand D is berekend, maar gerelateerd is aan de gespiegelde bron S* berekend met het gemiddelde grondvlak aan de bronkant en aan het gespiegelde waarneempunt R* berekend met het gemiddelde grondvlak aan de waarneemkant. Om δ* te berekenen worden alleen de punten S*, D en R* in aanmerking genomen – andere randen die het pad S*->D->R* blokkeren, worden verwaarloosd. Voor de bovenstaande overwegingen wordt de golflengte λ berekend met behulp van de nominale middenfrequentie en een geluidssnelheid van 340 m/s.

Als aan deze twee voorwaarden is voldaan, wordt de bronkant door rand D van de waarneemkant gescheiden, worden twee afzonderlijke gemiddelde grondvlakken berekend en wordt Adifberekend zoals beschreven in de rest van dit deel. Anders wordt voor dit pad geen demping door diffractie overwogen, wordt een gemeenschappelijk gemiddeld grondvlak voor het pad S -> R berekend, en Aground zonder diffractie (Adif = 0 dB) berekend. Deze regel geldt zowel in homogene als in gunstige omstandigheden.

Wanneer voor een specifieke frequentieband een berekening volgens de in deze sectie beschreven procedure wordt gemaakt, wordt Aground vastgesteld als gelijk te zijn aan 0 dB voor de berekening van de totale demping. Het grondeffect wordt rechtstreeks in de vergelijking van de algemene diffractieberekening in aanmerking genomen.

De hier voorgestelde vergelijkingen worden gebruikt om de diffractie op dunne schermen, dikke schermen, gebouwen, bermen (natuurlijke of kunstmatige) en door de randen van dijken, ingravingen en viaducten te verwerken.

Wanneer verscheidene diffractie-obstakels op een voortplantingspad worden aangetroffen, worden ze behandeld als een meervoudige diffractie door toepassing van de procedure die in de volgende sectie over de berekening van het padverschil wordt beschreven.

De hier gepresenteerde procedures worden voor de berekening van dempingen in zowel homogene als gunstige omstandigheden gebruikt. Bij de berekening van het padverschil en voor de berekening van de grondeffecten voor en na diffractie wordt rekening gehouden met straalbuiging.

Algemene beginslen

Figuur 2.5.c illustreert de algemene methode voor berekening van de demping door diffractie. Deze methode is gebaseerd op het opsplitsen van het voortplantingspad in twee delen: het pad van de ‘bronkant’, gelegen tussen de bron en het diffractiepunt, en het pad van ‘waarneemkant’, gelegen tussen het diffractiepunt en het waarneempunt.

Het volgende wordt berekend:

  • een grondeffect, bronkant, Δground(S,O)

  • een grondeffect, waarneemkant, Δground(O,R)

  • en drie diffracties:

    • tussen de bron S en het waarneempunt R: Δdif(S,R)

    • tussen de spiegelbron S′ en R: Δdif(S′,R)

    • tussen S en de spiegelontvanger R′: Δdif(S,R′).

      Bijlage 267910.png
      Figuur 2.5.c, Geometrie van een berekening van de demping door diffractie
  • 1: Bronkant

  • 2: Waarneemkant

waarbij:

S de bron is;

R het waarneempunt is;

S’ de spiegelbron is in verhouding tot het gemiddelde grondvlak aan de bronkant;

R’ de spiegelontvanger is in verhouding tot het gemiddelde grondvlak aan de waarneemkant;

O het diffractiepunt is;

zs de equivalente hoogte is van de bron S in verhouding tot het gemiddelde vlak aan de bronkant;

zo,s de equivalente hoogte is van het diffractiepunt O in verhouding tot het gemiddelde grondvlak aan de bronkant;

zr de equivalente hoogte is van het waarneempunt R in verhouding tot het gemiddelde vlak aan de waarneemkant;

zo,r de equivalente hoogte is van het diffractiepunt O in verhouding tot het gemiddelde grondvlak aan de waarneemkant.

De onregelmatigheid van de grond tussen de bron en het diffractiepunt en tussen het diffractiepunt en het waarneempunt wordt in aanmerking genomen door middel van equivalente hoogten berekend in verhouding tot het gemiddelde grondvlak, eerst de bronkant en vervolgens de waarneemkant (twee gemiddelde grondvlakken), volgens de methode beschreven in de subsectie over aanmerkelijke hoogten boven de grond (figuur 2.5.a).

Zuivere diffractie

Voor zuivere diffractie, zonder grondeffecten, wordt de demping verkregen door:

Bijlage 267911.png

(2.5.21)

waarbij:

λ de golflengte is op de nominale middenfrequentie van de frequentieband in kwestie;

δ het padverschil is tussen het gebogen pad en het rechtstreekse pad (zie de volgende subsectie over de berekening van het padverschil);

C’’ coëfficiënt is die wordt gebruikt om rekening te houden met meervoudige diffracties:

C’’ = 1 voor een enkele diffractie.

Voor meervoudige diffractie, indien e de totale afstand langs het pad is tussen het eerste en het laatste diffractiepunt (gebruik bij gunstige omstandigheden gebogen stralen) en als e hoger is dan 0,3 m (anders geldt C’’ = 1), wordt deze coëfficiënt gedefinieerd door:

Bijlage 267912.png

(2.5.22)

De waarden van dif worden vastgelegd:

  • indien dif< 0: ∆dif = 0 dB

  • indien dif > 25: ∆dif = 25 dB voor een diffractie op een horizontale rand en alleen op de term dif die in de berekening van Adifvoorkomt. Deze bovengrens wordt niet toegepast in de dif-termen die in de berekening van ground gebruikt worden, of voor een diffractie op een verticale rand (laterale diffractie) in het geval van kartering van industrielawaai.

Berekening van het padverschil

Het padverschil δ wordt berekend in een verticaal vlak dat de bron en het waarneempunt bevat. Dit is een benadering met betrekking tot het beginsel van Fermat. De benadering blijft hier van toepassing (bronlijnen). Het padverschil δ wordt zoals in de volgende figuren berekend, op basis van de aangetroffen situaties.

Homogene omstandigheden

Bijlage 267913.png
Figuur 2.5.d, Berekening van het padverschil in homogene omstandigheden. O, O1, O2 en O3 zijn de diffractiepunten

Opmerking: voor elke configuratie wordt de uitdrukking van δ gegeven.

Gunstige omstandigheden

Bijlage 267914.png
Figuur 2.5.e, Berekening van het padverschil in gunstige omstandigheden (enkele diffractie)

In gunstige omstandigheden hebben de drie gebogen geluidsstralen SO, OR en SR een identieke kromtestraal Γ, gedefinieerd door:

Γ = max(1.000,8d)

(2.5.23)

Waarbij d wordt gedefinieerd door de 3D-afstand tussen de bron en het waarneempunt van het opengevouwen pad.

De lengte van de kromming van een geluidsstraal

Bijlage 267915.png

wordt in gunstige omstandigheden aangeduid als

Bijlage 267916.png

Deze lengte is gelijk aan:

Bijlage 267917.png

(2.5.24)

In beginsel dienen drie scenario's in aanmerking te worden genomen in de berekening van het padverschil in gunstige omstandigheden δF (zie figuur 2.5.e). In de praktijk volstaan twee vergelijkingen:

als de rechte geluidstraal SR door het obstakel (1e en 2e geval in figuur 2.5.e) wordt gemaskeerd:

Bijlage 267918.png

(2.5.25)

als de rechte geluidstraal SR niet door het obstakel (3e geval in figuur 2.5.e) wordt gemaskeerd:

Bijlage 267919.png

(2.5.26)

waarbij A het snijpunt van de rechte geluidstraal SR en het verlengde van het diffractie veroorzakende obstakel is.

Voor de meervoudige diffracties in gunstige omstandigheden:

  • bepaal het convexe omhulsel gedefinieerd door de verschillende mogelijke diffractieranden;

  • elimineer de diffractieranden die zich niet op de grens van het convexe omhulsel bevinden;

  • bereken δF op basis van de lengten van de gebogen geluidsstraal door het gebogen pad in net zo veel gebogen segmenten te verdelen als er nodig zijn (zie figuur 2.5.f)

Bijlage 267920.png

(2.5.27)

Onder gunstige omstandigheden bestaat het voortplantingspad in het verticale voortplantingsvlak altijd uit segmenten van een cirkel waarvan de straal wordt verkregen door de 3D-afstand tussen de bron en het waarneempunt, d.w.z. alle segmenten van een voortplantingspad hebben dezelfde kromtestraal. Als de directe-boogverbinding tussen de bron en het waarneempunt geblokkeerd is, wordt het voortplantingspad gedefinieerd als de kortste convexe combinatie van bogen die alle obstakels omhult. Convex betekent in dit verband dat op elk diffractiepunt het uitgaande straalsegment naar beneden wordt afgebogen ten opzichte van het inkomende straalsegment.

Bijlage 267921.png
Figuur 2.5.f, Voorbeeld van berekening van het padverschil in gunstige omstandigheden, in het geval van meervoudige diffracties

In het scenario dat in figuur 2.5.f wordt afgebeeld is het padverschil:

Bijlage 267922.png

(2.5.28)

Berekening van de demping Adif

De demping door diffractie, waarbij de grondeffecten aan de bronkant en waarneemkant in aanmerking worden genomen, wordt berekend op basis van de volgende algemene vergelijkingen:

Adif = dif(S.R) + ground (S,O) + ground(On,R)

(2.5.29)

waarbij:

  • dif(S,R) de demping is door de diffractie tussen de bron S en het waarneempunt R,

  • ground(S,O) de demping is door het grondeffect aan de bronkant, gewogen door de diffractie aan de bronkant. Daarbij wordt er van uitgegaan dat O = O1 in het geval van meervoudige diffracties zoals in figuur 2.5.f,

  • ground(On,R) de demping is door het grondeffect aan de waarneemkant, gewogen door de diffractie aan de waarneemkant (zie de volgende subsectie over de berekening van de term ground(On,R)).

Berekening van de term ∆ground(S,O)

Bijlage 267923.png

(2.5.30)

waarbij:

  • Aground(S,O) de demping is door het grondeffect tussen de bron S en het diffractiepunt O. Deze term wordt berekend zoals aangegeven in de vorige subsectie over berekeningen in homogene omstandigheden en in de vorige subsectie over berekening in gunstige omstandigheden, met de volgende hypothesen:

  • zr = zo,s,

  • Gpath tussen S en O wordt berekend,

  • In homogene omstandigheden:

    Bijlage 267924.png

    = G'path in vergelijking (2.5.17),

    Bijlage 267925.png

    = G'path in vergelijking (2.5.18),

  • In gunstige omstandigheden:

    Bijlage 267926.png

    = Gpath in vergelijking (2.5.17),

    Bijlage 267927.png

    = G'path in vergelijking (2.5.20),

  • dif(S’,R) is de demping door de diffractie tussen de spiegelbron S′ en R, berekend als in de vorige subsectie over zuivere diffractie,

  • dif(S,R) is de demping door de diffractie tussen S en R, berekend als in de vorige subsectie over zuivere diffractie.

In het bijzondere geval dat de bron onder het gemiddelde grondvlak ligt:

dif(S’,R) = dif(S,R) en ground(S,O)=Aground(S,O).

Berekening van de term ∆ground(O,R)

Bijlage 267928.png

(2.5.31)

waarbij:

  • Aground(O,R) de demping is door het grondeffect tussen het diffractiepunt O en het waarneempunt R. Deze term wordt berekend zoals aangegeven in de vorige subsectie over berekening in homogene omstandigheden en in de vorige subsectie over berekening in gunstige omstandigheden, met de volgende hypothesen:

  • zs = zo,r,

  • Gpath wordt berekend tussen O en R,

De correctie G’path hoeft hier niet in aanmerking te worden genomen omdat de bron in kwestie het diffractiepunt is. Daarom wordt Gpath wel in de berekening van grondeffecten gebruikt, inclusief voor de ondergrensterm van de vergelijking die dan -3(1 – Gpath) wordt.

  • In homogene omstandigheden:

    Bijlage 267929.png

    in vergelijking (2.5.17),

    Bijlage 267930.png

    in vergelijking (2.5.18),

  • In gunstige omstandigheden:

    Bijlage 267931.png

    in vergelijking (2.5.17),

    Bijlage 267932.png

    in vergelijking (2.5.20),

  • dif(S,R’) is de demping door de diffractie tussen S en de spiegelontvanger R’, berekend als in de vorige subsectie over zuivere diffractie;

  • dif(S,R) is de demping door de diffractie tussen S en R, berekend als in de vorige subsectie over zuivere diffractie.

In het bijzondere geval dat het waarneempunt onder het gemiddelde grondvlak ligt: dif(S,R’) = dif(S,R) en ground(O,R)= Aground(O,R).

Scenario's met verticale rand

Vergelijking (2.5.21) kan worden gebruikt voor de berekening van de diffracties op verticale randen (laterale diffracties) in het geval van industrielawaai. In dit geval wordt Adif= dif(S,R) weggenomen en blijft de term Aground behouden. Bovendien worden Aatm en Aground berekend op basis van de totale lengte van het voortplantingspad. Adiv wordt nog steeds berekend vanaf de rechtstreekse afstand d. De vergelijkingen (2.5.8) en (2.5.6) worden respectievelijk:

Bijlage 267933.png

(2.5.32)

Bijlage 267934.png

(2.5.33)

Laterale diffractie wordt alleen in aanmerking genomen in gevallen waarin aan de volgende voorwaarden wordt voldaan:

  • De bron is een echte puntbron – niet geproduceerd door segmentatie van een uitgebreide bron zoals een bronlijn of diffuse bron.

  • De bron is geen gespiegelde bron die is geconstrueerd om een reflectie te berekenen.

  • De rechtstreekse straal tussen de bron en het waarneempunt ligt volledig boven het terreinprofiel.

  • In het verticale vlak met S en R is het padverschil δ groter dan 0, d.w.z. de rechtstreekse straal wordt geblokkeerd. Daarom kan in sommige situaties laterale diffractie in aanmerking worden genomen onder homogene voortplantingscondities, maar niet onder gunstige voortplantingscondities.

Als aan al deze voorwaarden is voldaan, wordt naast het gebogen voortplantingspad in het verticale vlak met de bron en het waarneempunt rekening gehouden met maximaal twee lateraal gebogen voortplantingspaden. Het laterale vlak is gedefinieerd als het vlak dat loodrecht staat op het verticale vlak en ook de bron en het waarneempunt bevat. De snijvlakken met dit laterale vlak zijn opgebouwd uit alle obstakels die door de rechtstreekse straal van de bron naar het waarneempunt worden doorsneden. In het laterale vlak bepaalt de kortste convexe verbinding tussen de bron en het waarneempunt, bestaande uit rechtlijnige segmenten en die deze snijvlakken omvat, de verticale randen die in aanmerking worden genomen bij de constructie van het lateraal gebogen voortplantingspad.

Om de demping door het grondeffect voor een lateraal gebogen voortplantingspad te berekenen, wordt het gemiddelde grondvlak tussen de bron en het waarneempunt berekend, rekening houdend met het grondprofiel dat verticaal onder het voortplantingspad ligt. Als in de projectie op een horizontaal vlak een lateraal voortplantingspad de projectie van een gebouw doorsnijdt, wordt dit in aanmerking genomen in de berekening van Gpath(meestal met G = 0) en in de berekening van het gemiddelde grondvlak met de verticale hoogte van het gebouw.

Reflecties op verticale obstakels

Demping door absorptie

De reflecties op verticale obstakels worden door middel van spiegelbronnen behandeld. Reflecties op gevels van gebouwen en geluidweringen worden dus op deze wijze behandeld.

Oppervlakken van objecten worden alleen als reflecterend beschouwd als ze minder dan 15° aflopen in verhouding tot de verticaal. Reflecties worden alleen in aanmerking genomen voor paden in het verticale voortplantingsvlak, dus niet voor lateraal gebogen paden. Voor de invallende en gereflecteerde paden, en in de veronderstelling dat het reflecterend oppervlak verticaal is, wordt het punt van reflectie (dat op het reflecterende object ligt) geconstrueerd met behulp van rechte lijnen onder homogene, en gebogen lijnen onder gunstige voortplantingscondities. De hoogte van het reflecterende object moet, gemeten door het punt van reflectie en gezien vanuit de richting van de invallende straal, ten minste 0,5 m bedragen. Na projectie op een horizontaal vlak moet de breedte van het reflecterend object, gemeten door het punt van reflectie en gezien vanuit de richting van de invallende straal, ten minste 0,5 m bedragen.

NB: reflecties op de grond worden hier niet behandeld. Deze worden bij de berekeningen van demping door de grens (grond, diffractie) in aanmerking genomen.

Als LWS het vermogensniveau van de bron S is, en αr de absorptiecoëfficiënt van het oppervlak van het obstakel is zoals gedefinieerd door EN1793-1:2013, dan is het vermogensniveau van de spiegelbron S’ gelijk aan:

LWS' = LWS + 10 ∙ lg(1-αr) = LWS + Arefl

(2.5.34)

waarbij 0 ≤ αr < 1

De hierboven beschreven voortplantingsdempingen worden dan op dit pad (spiegelbron, waarneempunt) als voor een rechtstreeks pad toegepast.

Bijlage 267935.png
Figuur 2.5.g, Spiegelende reflecties op een obstakel behandeld volgens de spiegelbronmethode (S: bron, S′: spiegelbron, R: waarneempunt)

Demping door retro-diffractie

In het geometrische onderzoek van geluidspaden hangt het aandeel van de energie dat door een verticaal obstakel (muur, gebouw) wordt gereflecteerd af van de afstand van het punt waar de straal aankomt tot de bovenste rand van het obstakel. Dit verlies van akoestische energie wanneer de straal wordt gereflecteerd, wordt demping door retro-diffractie genoemd.

In het geval van mogelijk meerdere reflecties tussen twee verticale wanden wordt ten minste de eerste reflectie in aanmerking genomen.

Bij een open tunnelbak (zie bijvoorbeeld figuur 2.5.h) wordt de demping door retro-diffractie toegepast op elke reflectie op de steunmuren.

Bijlage 267936.png
Figuur 2.5.h, Geluidsstraal die vier keer in een baan in een open tunnelbak wordt gereflecteerd: werkelijk dwarsprofiel (boven), opengevouwen dwarsdoorsnede (onder)

In deze afbeelding bereikt de geluidsstraal het waarneempunt ‘door achtereenvolgens door de steunmuren van de open tunnelbak te gaan’, die daarom met openingen kunnen worden vergeleken.

Bij de berekening van voortplanting door een opening is het geluidsveld op het waarneempunt de som van het directe veld en het door de randen van de opening gediffracteerde veld. Dit gediffracteerde veld zorgt voor de continuïteit van de overgang tussen het gebied met direct zicht en het schaduw gebied. Wanneer de straal de rand van de opening nadert, wordt het directe veld gedempt. De berekening is identiek aan die van de demping door een geluidsscherm in het vrije gebied.

Het padverschil δ’ in verband met elke retro-diffractie is het tegenovergestelde van het padverschil tussen S en R relatief op elke bovenrand O, en dit in een weergave volgens een ingezette dwarsdoorsnede (zie figuur 2.5.i).

δ' = – (SO + OR – SR)

(2.5.35)

Bijlage 267937.png
Figuur 2.5.i, Het padverschil voor de tweede reflectie

Het ‘min’-teken van vergelijking (2.5.35) betekent dat het waarneempunt hier in het gebied met direct zicht in aanmerking wordt genomen.

Demping via retro-diffractie retrodif wordt verkregen met behulp van vergelijking (2.5.36), die lijkt op vergelijking (2.5.21) met bewerkte notaties.

Bijlage 267938.png

(2.5.36)

Deze demping wordt toegepast op de rechtstreekse straal telkens wanneer die ‘door’ een muur of gebouw gaat (reflecteert). Het vermogensniveau van de spiegelbron S’ wordt dus:

LW' = LW + 10lg(1 – αr) – retrodif

(2.5.37)

In complexe voortplantingsconfiguraties kunnen diffracties tussen reflecties of tussen het waarneempunt en de reflecties bestaan. In dit geval wordt de retro-diffractie door de wanden geschat door het pad tussen de bron en het eerste diffractiepunt R’ (dat derhalve in vergelijking (2.5.35) als het waarneempunt wordt beschouwd) in aanmerking te nemen. Dit beginsel wordt weergegeven in figuur 2.5.j.

Bijlage 267939.png
Figuur 2.5.j, Het padverschil in de aanwezigheid van een diffractie: werkelijke dwarsdoorsnede (boven), opengevouwen dwarsdoorsnede (onder)

In het geval van meerdere reflecties worden de reflecties door elke individuele reflectie toegevoegd.

Wanneer er een reflecterend geluidscherm of reflecterend obstakel in de buurt van het spoor is, worden de geluidsstralen van de bron achtereenvolgens gereflecteerd door dit obstakel en door het zijvlak van het spoorvoertuig. Onder deze omstandigheden gaan de geluidsstralen tussen het obstakel en de carrosserie van het spoorvoertuig door voordat ze van de bovenrand van het obstakel worden afgebogen.

Om rekening te houden met meerdere reflecties tussen een spoorwegvoertuig en een nabijgelegen obstakel, wordt het geluidsvermogen van een enkele equivalente bron berekend. In deze berekening worden grondeffecten genegeerd.

Voor het afleiden van het geluidsvermogen van de equivalente bron gelden de volgende definities:

  • De oorsprong van het coördinatensysteem is de linker railkop

  • Een echte bron bevindt zich op S (ds=0, hs), waarbij hs de hoogte van de bron ten opzichte van de railkop is

  • Het vlak h=0 definieert de carrosserie van het voertuig

  • Een verticaal obstakel met de bovenkant bij B (dB, hb)

  • Een waarneempunt dat zich bevindt op een afstand dR > 0 achter het obstakel waar R de coördinaten (dB+dR, hR) heeft

De binnenzijde van het obstakel heeft absorptiecoëfficiënten α(f) per octaafband. De carrosserie van het spoorvoertuig heeft een equivalente reflectiecoëfficiënt Cref. Normaal gesproken is Cref gelijk aan 1. Alleen in het geval van open, platte goederenwagons kan een waarde van 0 worden gebruikt. Als dB>5hB of α(f) > 0,8 is, wordt er geen rekening gehouden met de interactie van de trein en het scherm.

In deze configuratie kunnen meerdere reflecties tussen de carrosserie van het spoorvoertuig en het obstakel worden berekend met behulp van spiegelbronnen die zich op Sn(dn = -2n • dB, hn = hs), n=0,1,2,..N bevinden; zoals weergegeven in figuur 2.5.k.

Bijlage 267940.png
figuur 2.5.k. Weergave van de modellering meervoudige reflecties tussen trein en geluidscherm.

Het geluidsvermogen van de equivalente bron wordt uitgedrukt door:

Bijlage 267941.png

(2.5.38)

Waar het geluidsvermogen van de gedeeltelijke bronnen wordt verkregen door:

LW,n = LW + ∆Lgeo,n+ ∆Ldif,n + ∆Labs,n + ∆Lref,n + ∆Lretrodif,n

(2.5.39)

Met:

LW

het geluidsvermogen van de echte bron

∆Lgeo,n

een correctieterm voor geometrische uitbreiding

∆Ldif,n

een correctieterm voor diffractie door de bovenkant van het obstakel

∆Labs,n

een correctieterm voor de absorptie aan de binnenzijde van het obstakel

∆Lref,n

een correctieterm voor de reflectie van de carrosserie van het spoorvoertuig

∆Lretrodif,n

een correctieterm voor de eindige hoogte van het obstakel als een reflecterend object

De correctie voor geometrische uitbreiding wordt verkregen door

Bijlage 267942.png

(2.5.40)

Bijlage 267943.png

(2.5.41)

De correctie voor diffractie door de bovenkant van het obstakel wordt verkregen door (2.5.42):

∆Ldif,n = D0Dn

(2.5.42)

Waarbij Dn de demping door diffractie is, berekend met formule (2.5.21) waarin C’’ = 1 voor het pad dat de bron Sn verbindt met het waarneempunt R, rekening houdend met diffractie aan de bovenkant van het obstakel B:

δn = ± (| SnB | + | BR | – | SnR |)

(2.5.43)

De correctie voor absorptie aan de binnenzijde van het obstakel wordt verkregen door:

∆Labs,n = 10 ∙ n ∙ lg(1 – α)

(2.5.44)

De correctie voor de reflectie van de carrosserie van het spoorvoertuig wordt verkregen door:

∆Lref,n= 10 ∙ n ∙ lg ((Cref)

(2.5.45)

De correctie voor de eindige hoogte van het reflecterend obstakel wordt door middel van retro-diffractie in aanmerking genomen. Het straalpad dat overeenkomt met een afbeelding in de orde van N > 0 wordt n maal gereflecteerd door het obstakel. In de dwarsdoorsnede vinden deze reflecties plaats op de afstanden di= –(2i – q)db, i = 1,2,..n. Met Pi (d = di, h = hb), i = 1,2,..n als de bovenkant van deze reflecterende oppervlakken. Op elk van deze punten wordt een correctieterm berekend als:

Bijlage 267944.png

(2.5.46)

Waarbij ∆Lretrodif,n,i wordt berekend voor een bron op positie Sn, de bovenkant van een obstakel op Pi en een waarneempunt op positie R'. De positie van het equivalente waarneempunt R' wordt verkregen door R'=R als het waarneempunt zich boven de zichtlijn van Sn van naar B bevindt; anders wordt de positie van het equivalente waarneempunt ingenomen op de zichtlijn verticaal boven het echte waarneempunt; dat zijn

dR' = dR

(2.5.47)

Bijlage 267945.png

(2.5.48)

2.6. Geluidsniveau en bevolking aan gebouwen toewijzen

[Regeling vervallen per 01-01-2024]

Bepaling van het aan lawaai blootgestelde gebied

De beoordeling van het aan lawaai blootgestelde gebied is gebaseerd op geluidsbeoordelingspunten op 4 m ± 0,2 m boven de grond, die overeenkomen met de in hoofdstuk 2.5 gedefinieerde waarneempunten, berekend op een raster voor afzonderlijke bronnen.

Voor de rasterpunten die zich binnen een gebouw bevinden wordt een geluidniveau toegekend dat gelijk is aan dat van de stilste nabijgelegen geluidswaarneempunt buiten dat gebouw.

Afhankelijk van de rasterresolutie wordt aan elk berekeningspunt in het raster het bijbehorende oppervlak toegewezen. Bijvoorbeeld, met een raster van 10 m x 10 m vertegenwoordigt elk beoordelingspunt een oppervlakte van 100 vierkante meter die wordt blootgesteld aan het berekende geluidsniveau.

Toewijzing van geluidsbeoordelingspunten aan gebouwen die geen woningen bevatten

De beoordeling van de blootstelling aan lawaai van gebouwen die geen woningen bevatten, zoals scholen en ziekenhuizen, is gebaseerd op geluidsbeoordelingspunten op 4 m ± 0,2 m boven de grond, die overeenkomen met de in 2.5 bepaalde waarneempunten.

Voor de beoordeling van gebouwen die geen woningen bevatten worden de waarneempunten op ongeveer 0,1 m vóór de gevels van de gebouwen geplaatst. Reflecties van de desbetreffende gevel wordt bij de berekening buiten beschouwing gelaten. Het gebouw wordt vervolgens in verband gebracht met het waarneempunt op de gevels met de hoogste geluidsbelasting.

Bepaling van de geluidsbelasting waaraan woningen en bewoners worden blootgesteld

Voor de beoordeling van geluidsbelasting van de bevolking worden alleen woongebouwen in aanmerking genomen. Er worden geen personen toegewezen aan andere gebouwen die niet als woning worden gebruikt, zoals scholen, ziekenhuizen, kantoorgebouwen of fabrieken.

Bepaling van het aantal inwoners van een gebouw

Het aantal inwoners per wooneenheid is gelijk aan de ‘gemiddelde huishoudensgrootte’ volgens de meest recente publicatie van het Centraal Bureau voor de Statistiek (CBS). Het aantal inwoners per gebouw is de som van het aantal inwoners van alle wooneenheden in het gebouw.

Toewijzing van geluidsbeoordelingspunten aan woningen en bewoners

De beoordeling van de blootstelling aan geluidsbelasting van woningen en bewoners is gebaseerd op geluidsbeoordelingspunten op 4 m ± 0,2 m boven de grond, die overeenkomen met de in hoofdstuk 2.5, gedefinieerde waarneempunten.

Om voor de geluidsbronnen wegen, spoorwegen en industrie het aantal woningen en bewoners te berekenen, worden waarneempunten op ongeveer 0,1 m vóór de gevels van woongebouwen geplaatst. Reflecties van de desbetreffende gevel worden bij de berekening buiten beschouwing gelaten. Voor het plaatsen van de waarneempunten wordt een van de onderstaande twee procedures gebruikt.

Geval 1: gevels die in regelmatige intervallen zijn verdeeld op elke gevel

Bijlage 267946.png
Figuur 2.6.a, Voorbeeld van waarneemlocaties in de omgeving van een gebouw volgens de geval-1-procedure
  • a) Segmenten van meer dan 5 m lengte worden verdeeld in regelmatige intervallen met de langst mogelijke lengte, maar minder dan of gelijk aan 5 m. Waarneempunten worden in het midden van elk regelmatig interval geplaatst.

  • b) Overige segmenten van meer dan 2,5 m lengte worden door één waarneempunt in het midden van elk segment weergegeven.

  • c) Overige aangrenzende segmenten met een totale lengte van meer dan 5 m worden als polylijn-objecten behandeld op een wijze die vergelijkbaar is met die welke in a) en b) wordt beschreven.

Geval 2: gevels op vaste afstand verdeeld van het begin van de veelhoek

Bijlage 267947.png
Figuur 2.6.b, Voorbeeld van waarneemlocaties in de omgeving van een gebouw volgens de geval-2-procedure
  • a) Gevels worden afzonderlijk beschouwd of vanaf de startpositie om de 5 m verdeeld, waarbij een waarneempositie halverwege de gevel of het 5 m-segment wordt geplaatst.

  • b) Het waarneempunt van het resterende deel bevindt zich in het middelpunt.

Toewijzing van woningen en bewoners aan waarneempunten

Wanneer informatie over de locatie van woningen binnen de voetafdruk van het gebouw beschikbaar is, worden die woningen en bewoners toegewezen aan het waarneempunt op de meest blootgestelde gevel van die woning. Het kan hierbij bijvoorbeeld gaan om vrijstaande woningen, twee-onder-een-kap- en terraswoningen, of flatgebouwen, waarbij de interne indeling van het gebouw bekend is, of voor gebouwen met een vloeroppervlakte die een enkele woning per verdieping aangeeft, of voor gebouwen met een vloeroppervlakte en -hoogte die een enkele woning per gebouw aangeeft.

Wanneer er geen informatie beschikbaar is over de locatie van woningen binnen de voetafdruk van het gebouw, zoals hierboven uitgelegd, wordt een van de twee volgende methoden gebruikt om per gebouw de blootstelling aan lawaai van de woningen en de bewoners in de gebouwen te schatten.

  • a) Uit de beschikbare informatie blijkt dat de woningen in een flatgebouw zo zijn ingedeeld dat ze een enkele gevel hebben die aan lawaai wordt blootgesteld.

In dit geval wordt de toewijzing van het aantal woningen en bewoners aan waarneempunten gewogen op basis van de lengte van de vertegenwoordigde gevel volgens de procedure van geval 1 of geval 2, zodat de som van alle waarneempunten het totale aantal woningen en bewoners die aan het gebouw zijn toegewezen, vertegenwoordigt.

  • b) Uit de beschikbare informatie blijkt dat woningen in een flatgebouw zo zijn ingedeeld dat er meer dan een enkele gevel aan lawaai wordt blootgesteld, of dat er geen informatie beschikbaar is over het aantal gevels van de woningen dat aan lawaai wordt blootgesteld.

In dit geval wordt voor elk gebouw de reeks van bijbehorende waarneemlocaties verdeeld in een onderste en bovenste helft op basis van de mediaanwaarde7 van de berekende beoordelingsniveaus voor elk gebouw. In het geval van een oneven aantal waarneempunten wordt de procedure toegepast met uitzondering van de waarneemlocatie met het laagste geluidsniveau.

Voor elk waarneempunt in de bovenste helft van de gegevensreeks wordt het aantal woningen en de bewoners gelijkelijk verdeeld, zodat de som van alle waarneempunten in de bovenste helft van de gegevensreeks het totale aantal woningen en bewoners vertegenwoordigt. Er worden geen woningen of bewoners toegewezen aan de waarneempunten in de onderste helft van de gegevensreeks8.

3. Meetmethoden

[Regeling vervallen per 01-01-2024]

Eventuele metingen, om welke reden dan ook, worden verricht in overeenstemming met de beginselen voor gemiddelde langetermijnmetingen zoals vermeld in ISO 1996-1: 2003 en ISO 1996-2: 2007.

  1. Een wegvak met aaneensluitende dagproducties wordt beschouwd als één werk. ^ [1]
  2. Het is toegestaan om, naast de meting onder 0 graden, alleen onder 45 of –45 graden te meten en het meetresultaat voor zowel –45 als +45 graden te gebruiken. ^ [2]
  3. Hiernaar dient nader onderzoek verricht te worden. Dit brugbijdragespectrum zal in het algemeen tot conservatieve resultaten leiden. ^ [3]
  4. Kamerstukken II 2009/10, 32 252, nr. 3. ^ [4]
  5. Kamerstukken I 2010/11, 32 252, nr. A. ^ [5]
  6. De absorptie van poreuze wegdekken wordt in het emissiemodel in aanmerking genomen. ^ [6]
  7. De mediaanwaarde is de waarde die de bovenste helft (50%) van een gegevensreeks scheidt van de onderste helft (50%). ^ [7]
  8. De onderste helft van de gegevensreeks kan worden gelijkgesteld met de aanwezigheid van relatief rustige gevels. Indien vooraf bekend is, bijvoorbeeld op basis van de locatie van gebouwen ten opzichte van de dominante geluidsbronnen, welke meetpuntlocaties plaats zullen maken voor de hoogste/laagste geluidsniveaus, is het niet nodig om het geluid voor de onderste helft te berekenen. ^ [8]
Naar boven